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Abstract

Learning analytics are what allows to extract more information from the content and user
data collected by X5gon. This extra information serves principally two purposes: (1) to be used
by other X5gon components to provide high level returns such as recommendations, learning
activities, learning paths, and (2) to help the X5gon developers and researchers imagine new ideas
and opportunities based on a better perception of what the data can tell us. Another intended
target group is made of developers who would want to build new applications from the open data
we are providing.

The two data components for learning analytics are content and user data. Whereas project
X5gon has been fairly successful in collecting content data, user data has been much more scarce
and difficult to obtain: the different tools proposed to new partner sites did not convince them, or,
better said, “when in doubt abstain” has been a policy followed by most.

This fact has made us adapt to an unforeseen situation and conducted us to enhance the quality
of the content data models on one hand, imagine new strategies to obtain a weaker form of user
data on the other.

A key event during the reference period was the F’AI’R hackathon whose finals took place in
Paris in February 2020. Making the material available to the participants required a special effort
both in consistency and clarity. The success of the Hackathon owes a little to the efforts reported
in the Deliverable.

The LAM consists today of (1) an Application Programming Interface (API) with access to
many different models and (2) a dashboard allowing to view the possibilities of this API.

The API and the dashboard can be accessed online : http://wp3.x5gon.org.

1 Introduction and overview of results

Year 3 of project X5gon allowed the production of many high level tools. Some are immediately
visible by the user. Others operate behind the screens. this is the case of the transcription and
translation tools (reported elsewhere) and of the Machine Learning models leading to the different
means of interfacing with these models. This deliverable concerns these aspects.

In the origin, the Learning Analytics Machine (LAM) work package (3) was designed in order to
make the most of the user and content data which were to be collected from the X5gon partners.

The initial intention was to install, on partner sites, code (called Connect-Service) which has
essentially two functionalities:

1. to capture user activity, and through anonymization be able to follow the learning paths taken
by real users over the different OER repositories.

2. to send the user (via her learning platform) a list of recommendations which can be presented
to the learner or the referring institution.

Both functionalities can be viewed in the platform videolectures.net where they are running. But
on other platforms, typically those belonging to Universities, this was impossible to install. Reasons
invoked or understood through discussions were:

• student privacy and safety: even if our code was open and made easy to read, the impression
was that sending out learner logs was too risky, or at least too difficult to explain if challenged,

• technical reasons with the authorisations necessary for the code to run,

• technical reasons related with the very different ways in which universities handled their re-
sources: this was often linked with the type of Learning Management System (LMS) used by
the university,
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• legal reasons related with licensing: not all universities feel they understand the licensing rules
and are aware that some of the material their staff has produced may not be acceptable,: a close
scrutiny would be necessary but would also be too expensive in many cases,

• quality management is also failing in some cases and going open also requires from a University
to be able to deal with that aspect,

• recommendations may be useful, provided the university knows how to deal with these; this
requires a policy and not that many universities have reached that point.

The LAM’s initial goal was to analyse millions of user logs. For reasons linked with the above discussion
this goal will not be fulfilled. But there have been interesting side effects while preparing ourselves for
the arrival of these user logs: models have been developed and tools have been built allowing to use
these models in an open way. Furthermore, in order to showcase the opportunities provided by these
tools (distributed in an easy to use API), we have built a dashboard allowing to survey the models
and tools in a scripted basket scenario: a user chooses some courses (using the search tools) contains
an ordering of her basket and recommendations of missing lectures which could enhance her learning
experience. Many of these tools were fine-tuned for the F’AI’R hackathon whose finals took place in
Paris in February 2020.

This deliverable follows D3.1 and D3.2 which presented earlier versions of the Learning Analytics
Machine. They reflect the activity from Task 3.2 which was intended to span over the period M1-
M24. For a number of reasons, the work was extended beyond that period: these include the F’AI’R
hackathon introduced new challenges, the issues mentioned earlier concerning the difficulty to get hold
of user data, and motivating research results.

Here we present an exhaustive list of the API end-points (Section 2). In Section 3 we introduce
a new dashboard which was built to make the API more understandable and to motivate developers
to use it. The F’AI’R hackathon represented a chance to test the API. But, in order to provide the
hackers with user data, these were generated through a process described in Section 4. We conclude
in Section 5.

2 The X5-GON Models API

2.1 Implementation choices

The X5gon models API is a Flask python web API strengthened by an auto-generated swagger
documentation which offers the possibility to test the endpoints directly on a nice web page. Through
the different offered endpoints, the users can consult the latest results and findings of the learning
analytics work package.

In details, the endpoints give the possibility to access and fetch the content analytics made on
the OERs based on the AI models implemented and tested on the X5gon corpus composed by the
different OERs collected by the pipeline. The main objectives of exposing such services are to:

• give an idea of the different learning analytics AI algorithms that we have implemented and
applied;

• give an initial entry point for the researchers to take control, do further experiments on an open
OER corpus and encourage the research activities starting from such a project achievements
which will enhance probably the open education;

• give an easy entry point to X5gon features (corpus, AI services, update/upload services. . . ) for
potential:
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– research activities in the open education sector,

– engineering activities exploiting X5gon AI results to enhance the learning in order to fulfill
X5gon objectives;

• enhance the philosophy of Open education to make it easier to ensure the expansion and growth
of such OER networks as X5gon.

2.1.1 Why choose to build a Python and why a Flask API?

• We need an API to make X5gon data (stored in the database or in the AI models) more
accessible to users.

• Most of the AI algorithms are based on the resources content (regarding that the user data
are not rich enough for the moment to make very good AI algorithms). So, principally we
implemented NLP(natural language processing) based algorithms. One of the richest and most
flexible programming languages used in this sector is python. We tried to exploit the different
libraries offered by this language.

• We needed an easy and quick to implement solution for a http web server: this was allowed with
a Flask python library.

• The Flask library offers a large amount of http server configurations to support the different
cases of our development/production environments: https, public IP, proxies, domain names,
http requests. . .

• This provided us with the possibility of performing efficient search: basing the discovery X5gon

search engine (discovery.x5gon.org) to get search results from keywords. These latter results
are further enriched by some meta-data (Title, License, wiki-concepts. . . ).

• Another fulfilled requirement was the quality and performance of the different system aspects,
especially the different libraries that make it easier the execution of parallel operations (this is
crucial when trying to implement AI algorithms).

• The large scale of libraries (through its different packages repositories) was another important
feature.

• And a final important argument was the large community to support the issues.

2.1.2 Why choose a swagger auto-generated documentation?

We chose a swagger auto-generated documentation (wp3.x5gon.org/lamapidoc) for the following
reasons:

• This allows auto-generated and real time update after potential modifications in the API.

• It always has up to date documentation.

• It provides live documentation and offers the possibility for the user to test the endpoints on a
nice web page.
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2.1.3 Why choose an Http REST API?

• Starting from the fundamental definition of an API, the endpoints ensure in a manner, which
is the http requests, some kind of communication that could be easily used by another pro-
gram/application.

• Although all the six criteria of a REST API are not present, we can consider that our API is
a REST one. The only missing ingredient is enabling the caching for all the endpoints: this is
by choice not enabled because of the type of data that we deal with in our project. Most of
the endpoints are responsible to fetch rich data about the OERs either stored in the DB or in
AI models (we are talking here about vectors with big number of elements). It is right that the
caching process enhances a lot the performance regarding the requests done by the client, but it
has some drawbacks such as loading more disk space/ RAM usage on the server side. And since
REST is and architectural style not a strict standard communication protocol specification, we
preferred to not assure this option for the moment and see later if it is judicious to adopt it.

• We need to be independent of any potential UI products: used in the hacks, used by the learning
analytics dashboard, Xlearn dashboard (course path finder). . .

• We would like it to be easy to integrate with any potential external applications: for example
many of projects during the F’AI’R hackathon were made based on the API endpoints.

• We also want it to be easy to maintain without perturbing the apps using it.

2.1.4 Why choose a services based API architecture?

• The endpoints/services, AI algorithms (tools) and models are implemented in this architecture
in a manner that ensures as much independence as possible between the latter 3 important
elements (endpoints, tools, models).

• It is easy to maintain: a cross services independence is respected and avoids perturbing potential
services when maintaining.

• It is easy to add new endpoints/services: an easy to implement service template can be used.

• Models are charged only once when the API is launched for the first time. This way, we ensure
that loading the models are not influencing (at least the minimum as possible) the performance
of the endpoints.

• AI algorithms are stored separately (called tools) and are included only when a needed by a
specific service. So it is easy to maintain a specific tool without touching the others (cross
independence is respected between tools in most cases).

2.2 End-points

Considering the diversity of the possible endpoints that can be implemented in such a complex project
which acts on a rich AI topic (education) and regarding the numerous objectives of the models API
mentioned above that we try to ensure by the end of the project, we decided to assemble the endpoints
into clusters we call namespaces. Depending on the information type returned to the user, we have ten
different namespaces; each one contains one or more endpoints. In summary, we can classify them into
two categories: a first group contains namespaces dealing with the possible representations of the OERs
that we have computed (processed content, TFIDF, wikifier, doc2vec representations) and a second
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group contains namespaces dealing with AI heuristics that we computed on OERs (recommendation,
sequencing, difficulty ...)

These two groups reflects our willingness to provide both essential natural language processing tools
(distance, preprocess) and new cutting edge tools particularly adapted for the pedagogic resources
(difficulty, sequencing, order, temporal).

For those which are directly inspired from the state of the art, we favorite the well known methods.
We also take a care to be as exhaustive as possible and to provide a tool for each kind of approach in
the SoA. As an illustration for the document representation, we propose Wikifier [1] which is a well
used concept extractor based on Wikipedia; from the vocabulary based approach we provide the term
frequency inverse document frequency representation (TFIDF) and finally from the most popular side
of the SoA, the embedding representation we provide Doc2vec [2]. Two of these model need a training
step on the corpus, this step may be time consuming and need a massive computing power, by using
our API instead of directly apply these methods on a raw text. The user benefits of advantage of
representations specifically suited for open education application purpose, while avoiding the need of
time and computation required by the training of a such model.

The second family regroup all methods developed for the specific needs of the open education
contents. Indeed our previous analysis let us think that notions of difficulty, sequencing as well
as understandable temporal representation are keys for the recommendation and understanding of
educational contents. As far as we could look the temporal representation of the content of the
document is not a well addressed task, in our desire to produce tools that are easily understandable and
usable. We defined two-temporal representations called ContinuousDoc2vec and ContinuousWikifier
(described below in theirs respective paragraphs) directly derived from the SoA of the document
representation. The notion of difficulty as discussed in the deliverable 3.2, have been most studied
mainly thorough the prism of complexity [3, 4] nevertheless the complexity is not the unique dimension
of difficulty in educational context, the notions of hardness and abstraction seems to have a great
importance in the human understanding of the difficulty. The lack of ground truth as well as the lack
of common evaluations have made it difficult to compare approaches. At this point, we still providing
two straightforwards approaches as described below and continue to investigate this question. The
sequencing end-points are a way to fill the void in scalable long-term recommendation [5]. Indeed,
the high scale approaches of the SoA focus on commercial applications [6, 7, 8], consequently the
recommendation is provided one by one on the fly which is very unsuitable for medium and long-term
objectives such as learning. At the opposite, the approaches on Open Educational context are without
scaling up, or specific to a special domain or use case and often a combination of the three [9, 10].

2.2.1 Preprocess

This namespace offers endpoints treating a content (an OER from X5gon or a custom text) to
preprocess it using a bench of possible configs probably useful for potential NLP applications (re-
movestopwords, lemmatize, phrase. . . ). These endpoints are implemented based mainly on spacy
python library and a phraser trained on the X5gon corpus.

2.2.2 Distance

The distance namespace offers the possibility to fetch one of the 3 main vectorial representations we
use to represent an OER, which are:

• the Wikifier: the content is represented by the most relevant wikipedia concepts extracted using
the Wikifier tool which bases on the concepts wikipedia pages graph and the PageRank score to
decide about concepts relevancy.
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• Tf-idf: the content is represented by the most frequent terms extracted based on the TF-IDF
algorithm.

• Doc2vec: the content is represented by a numeric representation computed by the Doc2vec
algorithm (an extension of the word2vec approach) aiming to describe the semantic relations
between the other resources in the corpus (as for the word inside a text in relation with its
neighbour words)

• Doc2vec: the content is represented by a numeric representation computed by the Doc2vec algo-
rithm (an extension of the word2vec approach) aiming to describe the semantic relations between
the other resources in the corpus (as for the word inside a text in relation with its neighbour
words). This namespace contains one endpoint offering the possibility to do a keywords searching
bias.

This namespace contains one endpoint offering the possibility to do a keywords searching based.
This is a draft for a search engine done principally to run the University of Osnabruck pilot. In
details, this is done based on the previous recommendsystem endpoint explained above: given a
search text/keywords, a kind of an interpolate (or a vector computation for the wikifier case) of
that text

.

All the vectors are computed using only the English transcriptions of the resources.
In addition to that, the K-NN (K-Nearest-Neighbours) of a specific resource are computed. Given

a customized content or a precomputed vector, the K-NN can be recovered (through inferring with
the last version of the models precomputed on X5gon corpus). The distance used to recover the
neighbours is the cosine distance between the vectors. The K-NN endpoints also return some extra
information (if specified in the request input) in addition to the ranked neighbors and distances. For
example, we represent in Figure 1 the way the API can be used to obtain the proximity matrix of the
neighbourhood and the 2nd projection of this matrix using the LLE algorithm, and in Fig. 2 the way
the K-NN endpoints can function.

2.2.3 Temporal

The endpoints offered by this namespace give a new manner to represent a content. The idea is to no
longer representing the resource as a big indivisible block. Instead, we use an object whose content
and therefore the related concepts evolve as the resource is consumed. This approach reduces the bias
due to the comparison of resources having very different sizes. Adding to that, this allows, especially
for long resources, to better capture the meaning of the content. For example, a 200-page book on
computer science does not look at all like the same resources in its first chapter, where it deals with
the history of computer science while its last chapter deals with the challenges of tomorrow’s computer
science. Practically, we simply cut the whole transitions of the resource into constant sized chunks of
5000 words. A 2500 words overlapping between the chunks is performed as a smoothing. For each
chunk, we simply compute the corresponding (wikifier, doc2vec) and wrap all these results into an
output list.

2.2.4 Ordonize

This namespace offers an endpoint that returns the logical order for a list of candidates comparing to
a principal resource based on their continuous Wikifier vectors, given a resource and a list of candidate
resources. The model behind is based on the following assumption: using the continuous Wikifier we
can follow the evolution of concepts through the resources; intuitively the first resource should define
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Figure 1: Distance namespace endpoints

Figure 2: KNN Wikifier endpoint example
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concepts which can be reused in the following one. More precisely, the common concepts of the two
resources should appear earlier in the first resource than in the following one (at least on average),
due to the fact that the learner is familiar with them since they have already been mentioned in.

2.2.5 Missing resource

This namespace offers an endpoint that gives the most probable resource, from a list of candidates,
that can fit between a given previous and after resources (from the X5gon database). The prediction
is currently done based on wikifier of each resource. The best intermediate resource is the one which
maximizes the number of concepts shared with previous or after resource but not both.

2.2.6 Sequencing

This namespace offers endpoints implemented based on the same algorithms (tools) used in the previ-
ous 2 namespaces explained above. The proposed endpoints are meant for use mainly by the Course
Path Finder tool. This tool is included in the learning analytics dashboard (wp3.x5gon.org) and in
some other X5gon solutions such as the X5Learn dashboard (x5learn.org). In details, given an
OERs list, the proposed services help the user to build a coherent sequence through several possible
functionalities such as:

• sort: to order a list of resources.

• insert: to propose potential resources to be included in specific positions.

• remove from sequence: to decide which is the odd resource (which could be removed) given an
ordered list.

• remove from basket: to decide which is the odd resource (which must be removed) given a non
ordered list.

This is illustrated in Figures 3 and 4.

Figure 3: Sequencing namespace endpoints

2.2.7 Difficulty

This namespace offers endpoints permitting to estimate the difficulty score of a given resource or a
custom content. Two possible methods are proposed: a first one based on the concepts appearing per
second and a second one is based on the Kurtosis of the keywords contained in the TF-IDF vector
representing the content.

This is illustrated in the Figure 5.
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Figure 4: Sort endpoint example

Figure 5: Difficulty namespace endpoints
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2.2.8 Recommendsystem

This namespace contains one endpoint offering the possibility to get an OER recommendation given
a main resource. This version of the recommender is an item based recommendation (based on the
content), precisely on the English transcriptions of the OERs inside X5gon. The approach behind it
is the K-NN models computed from the English contents. So given a resource id, a K-NN algorithm is
executed to determine which are the nearest resources through computing cosine distance between the
vectors representing the resources. Adding to that, we can specify the model type while executing the
endpoint: wikifier, tfidf, doc2vec. That will give the user more flexibility and control to choose
and compare recommendation results using the different models.

Figure 6: Recommendation system namespace endpoints

Figure 7: Recommendation item based endpoint example

2.2.9 Search engine

This namespace contains one endpoint offering the possibility to do a keywords based search. This
is a draft for a search engine done principally to run the University of Osnabrück pilot. In details,
this is done based on the previous recommend system endpoint explained above: given a search
text/keywords, a kind of an interpolate (or a vector computation for the wikifier case) of that text is
done on the corresponding pre-trained model (Wikifier, Tf-idf, Doc2vec) on X5gon corpus in order
to get the representative vector of the input text. Then, the K-NN algorithm continues the job to
recommend the nearest neighbors, as explained previously. So to be precise, this might not be a
perfect solution for a search engine, even if the pilot results showed some good signs about the quality.
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2.2.10 Others

The idea of this particular namespace is to englobe all the endpoints that are not directly needed to
share the data or the algorithms. For example, now it englobes 2 endpoints needed by the learning
analytics dashboard which are:

• search: basing the discovery X5gon search engine (discovery.x5gon.org) to get search results
from keywords. These latter results are further enriched by some meta-data (Title, License, wiki-
concepts...).

• neighbours: basing on the same K-NN endpoints algorithms to return the neighbours of a
specific resource with a further related meta-data.

2.3 Usage statistics

As explained above, our ultimate objective when exposing publicly this API is to give an initial easy
to start software related to X5gon data and AI findings in order to encourage further research or
engineering activities around. As a result, this will enhance the AI research in the field of open
education and will expand a lot the X5gon concepts which should help extend the OER network as
well.

As a first real life test, we had the opportunity to try the API for its first public deployment
(wp3.x5gon.org/lamapidoc) in November 2019; this was done through making it available as a
technical infrastructure for the F’AI’R hackathon (x5gon.org/event/ai-hackathon/) during the
local semi finals and the Paris finals as well. Here (Figure 8) we show some usage statistics during
this period (November 2019 - March 2020).

Figure 8: Viewing the accesses made on the API over time

Figure 8 shows the usage (accesses) of the API endpoints over time. We can notice the peak during
the end of the months of December and February corresponding respectively to the local hackathons
(Nantes and UCL) and the final hackathon in Paris (25-26 February 2020).

Figure 9) shows the accesses by endpoints. We can notice that most of the accesses were focused
on the preprocess, difficulty, search and recommend endpoints. The important use of the preprocess
endpoint could be explained by the fact that many of the ideas presented during the hackathon
focused on the content as a starting point to implement AI algorithms related to open education and
the learning buddy which was the main topic of the finals.

Figure 10 shows the distribution of the last 2000 accesses by country.
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Figure 9: Viewing the accesses per endpoint

Figure 10: Viewing the accesses per country
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3 A dashboard for enhancing the opportunities of the API

3.1 The necessity of a dashboard

The API described in the previous section is a powerful tool. Its utility has been demonstrated in the
context of the F’AI’R hackathon whose finals took place in Paris on February 25 & 26 2020.

In the case of the hackathon the rules of the game stipulated that the participants were to use the
API. In reality it has proved difficult to onboard developers for many reasons. One is that the API
provides complex tools which trigger questions rather than the opposite.

So, in order to demonstrate the power of those tools it was decided to build a specific dashboard
whose value resides in the capacity of convincing people in the value of the different models built
during the project.

3.2 Choices made

The choice made was to insist on our capacity of computing the following

• the time needed to consume a resource;

• the difficulty of the resource with the importance of being able to compare the difficulty between
resources;

• the main topics/concepts in a resource, and, when possible, to use these to compare resources;

• the closeness between resources, the cat that we can build projections in which different resources
will appear together when they share themes, topics, keywords or concepts;

• the order in which resources should be watched.

Other features computed in the models and accessible via the API were not shown, in order to make
the experience appealing.

3.3 Presentation of the dashboard

Figure 11: Searching for a set of resources

The entry point is a simple search tool (Fig. 11). The user (registered or not) can search for a
particular string. The search engine used here is the one developed for X5gon.

A list of OER is proposed (Fig. 12), from which we choose a first resource. Then, a spacial
representation, centred around this chosen resource, is shown. Each resource is shown as a disk whose
size is proportional to its length. The difficulty of the resource is also represented graphically. A more
complete description is given also (Fig. 13). 5 concepts are extracted (through access to the wikifier
model) and their importance also appears graphically. By selecting another resource, the list of key

Copyright - This document has been produced under the EC Horizon2020 Grant
Agreement H2020-ICT-2014 /H2020-ICT-2016-2-761758. This document and its
contents remain the property of the beneficiaries of the X5gonConsortium.

Page
15/26



Figure 12: Result of search

Figure 13: A resource is described

Figure 14: A small menu (with the basket option)

Figure 15: The content of the basket
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Figure 16: The basket is reorganized

Figure 17: A new resource is proposed
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concepts is modified. At any moment, the user may choose to add the item (the OER) to her basket,
perhaps to view it later (Fig. 14).

After a while, we may choose to look at our basket (Fig. 15)and ask for help to have it ordered
(Fig.16).

More enhanced options are possible. For example, the playlist can be sent in and the system will
suggest an intermediate new resource, as in Figure 17.

3.4 Results

The dashboard was developed from December 2019 to February 2020 and has been tested since then.
The different features we expected have been implemented. The key concept is that of ordering the
resources in the basket. This is done through a novel algorithm developed during the project (Article
in review).

In a nutshell, we hypothesize the existence of a partial order ≤ over all OERs, for which we only
have ground truth data for a sub-order ≤gt. This sub-order is induced by teacher defined series of
resources. As a first evaluation scheme we check the quality of prediction with comparison to this
ground truth. But if we want to measure the quality of prediction for the part of the partial order
for which we do not have data, things become more complex and only an indirect validation seems
possible. We introduce a scheme for this in which arbitrary elements (incomparable with a and b for
≤gt are used: if they allow to predict correctly a ≤ b rather than b ≤ a we argue that this is an
indication that the predictors generalize well beyond ≤gt).

We use the algorithm presented in Deliverable 3.2 and implemented in the ordonize endpoint on this
problem, but the experimental results are not yet convincing and the problem remains challenging.

4 Hackathon related Developments

The F’AI’R Education Hackathon (https://www.x5gon.org/event/hackathon/), showed that there
was a clear willingness to promote the usage of AI for Open Education. One of the most promising
branches of AI is Machine Learning which needs a lot of data to be successful.

Consequently, providing data-sets related to open educational resources and learning analytic on
educational platforms was a central issue for “a good hack”. This is all the more true since there is a
lack of open data-sets on data related to open education in the state of the art.

In the case of X5gon, the data we would want to provide was two-fold: content and user data.
The data-set and the tutorial we provide are freely available in their up-to-date version at:

https://gitlab.univ-nantes.fr/x5gon/x5gon-hackathon-datasets.

4.1 Generating a catalogue

For the content data the APIs developed by the different partners constitute a large and powerful
framework. Consequently the main issue we had was to facilitate the usage of the APIs. The API’s
usage often requires the X5gon unique id as input for the services, furthermore the X5gon database
contains more than 500 000 OERs.

For these reasons we built “an oer book” called catalogue. The catalogue is a tsv (tab separated
value) file containing as fields:

id: The unique X5gon id of the resource in the database allowing to request APIs,

title: the resource title,

language: the original language,
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type: the mime type,

keywords: the most relevant keywords in the resource extracted by tf-idf,

concepts: the most relevant Wikipedia concepts.

It was built to easily filter a subset of interesting resource on the specific topics or in a specific language
and to directly recover the X5gon ids of the resources, in order to use these for more complex tasks
using the APIs.

To easily get started with the API we also provided a hand-on notebook available online which
shows how the catalogue and the API can be used to resolve basic questions related to real world
problems in Open Education.

Here are some examples:

• Find 10 OERs which are about chemistry and can be seen in less than 20 minutes?

• How many OERs do we have which are in French and talk about Machine Learning?

4.2 Generating user data-sets

Context In the current state of the project, the user analytics are recorded as learning paths through
the urls -and the corresponding OERs- on different platforms.

The collection of user data is done thanks to a snippet implemented on the different partner
sites. Each user who has accepted the cookie provides his learning activity to the platform. This
information is used to provide a personalized recommendation and more generally to propose tools
allowing a better learning experience to the user. The learning logs are usually more complex to share
due to the confidential nature of user data. Nevertheless, the usage of such data in Open Education
suggests some very promising possibilities.

In order to fill the need of available free data-sets on user activities in Open Education context
while ensuring a total protection of learner data, one possible approach consists in anonymizing a set
of real users data and to provide these as an open data-set. Unfortunately, a convincing anonymization
process, especially on sequential data, remains a challenging open question as it is difficult to ensure
with certainty that an effective anonymisation process that does not degrade the data too much and
at the same time ensures total anonymity of the users exists.

The majority of the approaches [11, 12, 13] assume a set of sequences on which we can apply some
specific techniques in order to do some kind of anonymization, directly or indirectly, on the data to
be processed. For this reason, they are not suitable in the context of sequence mining.

Taking into consideration this statement, we chose to focus on another kind of approach to generate
a new data-set for the hackathon.

The idea was to train a probabilistic model on real user activities and to use it to generate artificial
user activities which mimic as closely as possible the characteristics of the initial data-set.

This approach has already been shown to be relevant for the case of sequential data such like the
user learning path. In one specific work, Jacquemont et al. have used a K-testable language based
approach in the context of predict car traffic [14].

We chose to follow the aforementioned approach, and to adapt it to the special case of learning
paths in the X5gon project.

Method The first step was to pre-process the real data. We decided to chunk the stored data into
sessions. A session is a series of OER accesses for a same user such that less than 3 hours have elapsed
between two consecutive accesses.
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From that, following Jacquemont et al.’s approach we learnt a probabilistic deterministic finite
state automaton (PDFA) A = 〈Q,Σ, q, q0, π, πF 〉 which is a model for the sequences. Formally,

• Q is a finite set of states

• q0 is the initial state

• Σ is the alphabet; in our context the set of X5gon ids corresponding to all resources accessed
by any user;

• δ : Q× Σ → Q is a transition function;

• π : Q× Σ → [0 ; 1] is a probability function on the transitions;

• πF : Q → [0 ; 1] is a probability function assigning to each state the probability of finishing in
that state.

Building this automaton was done through a classical algorithm. We added a step to introduce
the probabilities (for more details reader may refer to [15]).

For our experiment we chose k = 2. The very large vocabulary size justified this choice. In practice
we used as training set a sample of 977,435 log-items from 83,794 users. With a length between 4 and
2000 and an average length of 11.6. 90% of the sessions were of length 100 or less and 35% of 10 or
less.

To take into account the length of the transitions, we added a probability function ∆t : Q× Σ →
[0 ; 1]. For each transitions (s, a), ∆t(s, a) was drawn from a positive Gaussian N+(µa,s, σa,s), where
µa,s is the average consultation time observed for this transition in the real data-set and σa,s is its
variance.

To simulate the user logs, a multinomial distribution was applied on the entry OER –the OER
which appears at least once at the beginning of a session (3243 in the X5gon logs)–, and others were
used on each transition to simulate the learning path.

Real user data A detailed analysis of real user data was presented in the Deliverable D4.6. Here
we will focus on the subset of user data we use as inputs for the generator. We choose to only keep
sessions with at least 3 resources consulted and at most 2000, we also introduce a filter on duration
to keep only sessions with a total duration included between 3 minutes and 24 hours. We thus obtain
a data-set of 17137 session.

Min Max Avg Std 0.25 q Med 0.75 q 0.9 q 0.95 q

Session duration 23h59m 3m 2h50m 6h17m 6m 15m 1h31m 11h46m 19h53m

Session length 3 720 6.06 8.33 3 4 6 11 15

Table 1: Distribution of session lengths and durations (q means quantile).

The Table 1 shows the distributions of the length and duration of sessions; for both we observe a
power-law, which means a random selected session is short and navigates through very few resources.

Figure 18 shows that there are very few navigations between platforms; the majority of these
actions are between videolectures and UPV. We observe much more navigation between different types
of OERs due to the fact that some providers such as videolectures host several types of resources.
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Figure 18: Switch respectively between resources from different provider (left) and resources of different
types (right).

Provided data-set The user traces provided were totally generated and are in no way traces from
real users.

After evaluating the probabilities we generated a set of 100,000 sequences which were made avail-
able for the Hackathon.

In practice, the participants to the hackathon used essentially the content data which was dis-
tributed via the API. So we have not received the feedback for the user data.

The generated learning activities data-set is a psv file which should be read as follow:

session id: The unique X5gon id of the resource in the database allowing to request APIs.

oer id: The resource title.

timestamp: The original date at which the resource was deposited.

As example suppose we generate the following learning path (with sessionid=0 as an example):
he/she begins by watching Lecture 1 - The Motivation & Applications of Machine Learning by Andrew
Ng (oerid 1001) at 2020-02-04T12:54:58+00:00. Then 1 hour later, the Lecture 2 - An Application
of Supervised Learning - Autonomous Deriving by Andrew Ng (oerid 1002). Finally 2 hours and 40
minutes later he/she finishes by Lecture 3 - The Concept of Underfitting and Overfitting by Andrew
Ng (oerid 1003)

The corresponding records in the psv should be :

sessionid|oerid|timestamp

0|1001|2020-02-04T12:54:58+00:00

0|1002|2020-02-04T13:54:58+00:00

0|1003|2020-02-04T16:34:58+00:00

5 Conclusion

The content data collected through the various X5gon sites have been exploited in different ways:
several models are build and access to these models is provided through the many end-points of an API.
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The API itself is demonstrated through a specific dashboard, with the goal of convincing developers
of the potentials of the different models. This API was also used in the hackathon organized in 2019-
2020, providing the teams with access to the rich information they made use of. User data has been
more problematic. Getting hold of quality user data has proved to be difficult, with many obstacles
identified. As a risk management approach, we provided two solutions. (1) For the hackathon, we
built an alternative and artificial data-set with properties similar to those from the original data-set.
(2) For the project’s needs, and specially for recommendation, high quality content data was chosen.

As these lines are written, the coronavirus crisis is taking its toll. A side effect is the huge needs
for projects like X5gon. Let us hope the efforts reported in this document be of use in these crucial
moments.
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