

A brief description of available services
in the X5gon models API

This document is a quick overview of the models provided by the X5gon models API, a
technical detailed documentation with specific input and output for each service can be
found at ​http://wp3.x5gon.org/lamapidoc​. Even more information can be found in the ​WP 3.2
deliverable​ . Some ipython notebooks in which basic examples on what it is possible to do
with the API can be found at
(​https://colab.research.google.com/drive/1I5PQqN3lWPPYQIaVeKD_ZDfSd9R_Grj0​)

Preprocess

This domain allows the user to recover a preprocessed textual content of a resource. All the
preprocessing done is optimized on the x5gon resources.

text2phrase​ joins words in transcriptions that appear frequently together, and infrequently in
with other context words. This preprocess can be very useful before more complex text
manipulation such as doc2vec. The model used was trained on all the x5gon resources in
order to detect particularly well the phrase specific to educational context.
See the model of ​https://radimrehurek.com/gensim/models/phrases.html​ for a detailled
explanation.

text2processedtext​ allows to apply some basics text preprocessing:

● lemmatization
● stop words removing
● part of speech removing to keep only nouns, verbs, adjectives, propositions.

Different endpoints are provided, the exact preprocess can be found directly in the service
description in the API documentation.

tr2text​ simply allows to transform dfxp file into plain text, by removing all xml tags.

Distance

http://wp3.x5gon.org/lamapidoc
https://colab.research.google.com/drive/1I5PQqN3lWPPYQIaVeKD_ZDfSd9R_Grj0
https://radimrehurek.com/gensim/models/phrases.html

In this domain are grouped all the vectorial representations of the resources. All these
vectors was computed using only the whole english transcriptions of the resources.
For each representation (doc2vec, tfidf, wikifier) an endpoint (fetch) is dedicated to simply
recover the vector for a given input.
And a second one (knn) is dedicated to recover neighbors of the input resource according to
the corresponding representation. The distance used is the ​cosine distance​ between the
vectors. The knn service also provides some other extra features in addition to the ranked
neighbors and distances such as: proximity matrix of the neighborhood and 2d projection of
this matrix using LLE
(​https://scikit-learn.org/stable/modules/manifold.html#locally-linear-embedding​).

Difficulty

In the difficulty domain three metrics of difficulty are provided:

● (conpersec) The number of wikipedia concepts per second in the transcription for a
user with an average reading speed.

● (charpersec) The number of characters per second in the transcription for a user with
an average reading speed.

● (tfidf2technicity) A difficulty metric based on the tfidf distribution of the transcription.

Temporal domain

The idea is to no longer representing the resource as a big indivisible block. But on the
contrary as an object whose content and therefore the concepts related to it evolve as the
resource is consumed. This approach reduces the bias due to the comparison of resources
of very different sizes. And also allows in particular for long resources to better capture the
meaning of the content. For example, a 200-page book on computer science does not look
at all like the same resources in its first chapter, where it deals with the history of computer

https://scikit-learn.org/stable/modules/manifold.html#locally-linear-embedding

science, and in its last chapter, where it deals with the challenges of tomorrow's computer
science.
Practically, we simply cut the whole transitions of the resource in constant sized chunk of
5000 words without overlapping between chunks. For each chunk, we simply compute the
corresponding (wikifier, doc2vec) and wrap all these results in an output list.

Missing resource

This endpoint gives the most probable resource from a list of candidates, for given previous
and after resources from the database. The prediction is currently done based on wikifier of
each resource. The best intermediate resource is the one which maximizes the number of
concepts shared with previous or after but not both.

ContinuousWikification2order

This endpoint returns the logical order for a list of candidates comparing to the principal
resource based on their continuousWikifiers: given a resource and a list of candidate
resources.
The model is based on the following assumption: using ContinuousWikifier we can follow the
evolution of concepts through the resources; intuitively the first resource should define
concepts which can be reused in the following one. More precisely, the common concepts of
the two resources should appear earlier in the first resource more than in the following one
(at least on average), due to the fact that the learner is familiar with them since they have
already been mentioned in.

