

Copyright - This document has been produced under the EC Horizon2020 Grant Agreement H2020-ICT-2014

/H2020-ICT-2016-2-761758. This document and its contents remain the property of the beneficiaries of the X5GON
Consortium

P a g e 1 / 27

X Modal
X Cultural
X Lingual
X Domain
X Site
Global OER Network

Grant Agreement Number: 761758
Project Acronym: X5GON
Project title: X5gon: Cross Modal, Cross Cultural, Cross Lingual, Cross Domain, and
Cross Site Global OER Network
Project Date: 2017-09-01 to 2020-08-31
Project Duration: 36 months
Document Title: D2.2 - Final server side platform
Author(s): Erik Novak
Contributing partners: JSI, Nantes, UCL
Date:
Approved by:
Type: P
Status: Draft/Final
Contact: Erik Novak (erik.novak@ijs.si)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission

Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission

Services)

P a g e 2 / 27

Revision

Date Lead Author(s) Comments

20.08.2019 John Shawe Taylor First Review of the Draft

P a g e 3 / 27

TABLE OF CONTENTS
List of Figures .. 4

List of Tables .. 4

Abbreviations ... 4

Abstract ... 5

1. Introduction ... 6

2. Platform Architecture ... 7

3. The Ingesting and Processing Pipeline ... 9

3.1. Material Collector .. 9

3.2. Material Processing Pipeline ... 10

3.2.1. Schema Definition ... 11

3.2.2. Content Extraction ... 11

3.2.3. Content Enrichment ... 12

3.2.4. Attribute Validation .. 12

3.3. Pipeline Process Analysis ... 12

3.4. Real-Time Data Distribution .. 13

4. Database .. 14

4.1. Database Structure ... 14

4.2. Database Statistics ... 16

5. Platform Services ... 17

5.1. Recommender Engine .. 17

5.2. Quality Assurance Tool ... 17

5.3. Learning Analytics Tool ... 17

6. Platform API .. 19

6.1. Material Upload API .. 19

6.2. Material Retrieval API ... 20

6.3. Material Search API .. 20

6.4. Material Recommend API ... 21

8. X5GON Connect Service .. 22

8.1. Application Form ... 22

8.2. Setting up the Connect Service .. 22

8.3. Connect Service Functionality .. 23

9. Future Plans .. 24

9.1. Content Extraction ... 24

9.2. Service Integration .. 24

9.3. Process Analysis Components ... 24

9.4. Continuous Indexing of OER Materials... 24

10. Conclusion ... 25

References .. 26

P a g e 4 / 27

LIST OF FIGURES
Figure 1: The X5GON platform architecture. It connects the database, ingesting and
processing pipeline, its services and the API server. .. 7
Figure 2: The X5GON platform architecture with the focus on the ingesting and
processing pipeline. The pipeline retrieves the appropriate material, process,
enriches and stores it in the database. .. 9
Figure 3: The material processing pipeline. Depending on the materials type, it
extracts its content, enriches and validates it before storing it in the database. 10
Figure 4: The dynamics of data distribution with Apache Kafka. It shows the data
distribution flow between the production and development machines. 13
Figure 5: The database schema of the most relevant data tables. It consists of data
from user activities and OER material metadata. ... 14
Figure 6: The X5GON platform architecture with the focus on the X5GON services.
The services retrieve and stores the resulting data to the database. 17
Figure 7: The X5GON platform architecture with the focus on the components
associated with the platform API. The API retrieves the user request and proxies it to
the appropriate service. ... 19
Figure 8: A snapshot of the application form. .. 22

LIST OF TABLES
Table 1: Number of records in the database statistics. ... 16

ABBREVIATIONS

Acronyms Definitions

OER Open Educational Resource

XML eXtensible Markup Language

API Application Programming Interface

JSON JavaScript Object Notation

URL Uniform Resource Location

MIME Multipurpose Internet Mail Extensions

P a g e 5 / 27

ABSTRACT
In this report we present the final server-side platform architecture. We describe the
different components which are able to acquire, process and enrich the material and
user data. In addition, we present different services and the platform API used to

access the processed material metadata and the services.

P a g e 6 / 27

1. INTRODUCTION
The purpose of this document is to report on the final server-side platform. During the
process of platform development, we have evaluated and considered the different
component requirements identified in deliverable 2.1 – Requirements & Architecture

Report.

The platform consists of four major components – the database, ingesting and
processing pipeline, services and platform API – each employed to perform a separate
task. The platform is able to process three types of OER materials: text, video and
audio. In addition, it enriches them through a process called Wikification. The
processed materials are stored into the database. The database also contains data
about user activities on the OER repositories that integrated the X5GON Connect
Service, a library developed for acquiring behaviour data. The database is accessed
by the different services developed within the project – the recommender engine, the
quality assurance tool and the learning analytics tool – which can be accessed through
the platform API.

The document is structured as follows. Section 2 contains a high-level description of
the platform architecture, its main components and how it was developed. Section 3
describes the components of the ingesting and processing pipeline – the components
tasked to acquire and enrich the material metadata. Next, section 4 explains the
reasoning behind choosing PostgresQL as the main database system used in the
platform. In addition, it describes the database schema of the most relevant data
tables. A description of the available services is available in section 5. Afterwards,
section 6 describes the platform API and provides examples of the API endpoints.
Section 7 is dedicated to the X5GON Connect Service – describing its functions and
the data it acquires. Afterwards, we present future work in section 9 and conclude the
document in section 10.

P a g e 7 / 27

2. PLATFORM ARCHITECTURE
In this section we present the X5GON platform architecture. The initial version has
been presented in deliverable D2.1 Requirements & Architecture Report, from which
we have extended its design.

The platform is developed to connect four different yet important components:

• The database. The service which contains all of the processed OER material
metadata, and user activity data.

• The ingesting and processing pipeline. The component which extracts the
appropriate OER material metadata, enriches it, process it and sends it to the
database.

• The services. The components which consumes the data stored in the
database and provides recommendations, quality and insight into the OER
materials, as well as into how users consume the materials.

• The API server. The component connecting all previously mentioned
components. In addition, it provides an access point for the users to access the
developed services and the processed material metadata.

Figure 1 show the high-level overview of the platform architecture. It shows how the
server sends the user requests and data to the appropriate endpoints – either to the
services or to the ingesting and processing pipeline.

Figure 1: The X5GON platform architecture. It connects the database, ingesting and processing pipeline,
its services and the API server.

P a g e 8 / 27

The majority of the platform was developed with javascript (nodejs), while some
services are developed with the Python programming language. Parts of the
architecture are connected with the use of the Apache Kafka service [1]. The database
system in use is PostgresQL. The code of the main platform components is available
on GitHub [2] while the platform itself is served on its own website [3]. The platform
runs on a machine with 150GB of space, 32GB of RAM and 8 CPUs. The operating
system installed on the machine is Linux Debian 8.6 (jessie).

In the following sections 3, 4, 5, and 6, we describe each corresponding platform
component in detail. In addition, section 6 describes the API access point through

which users can access the services and the processed OER material metadata.

P a g e 9 / 27

3. THE INGESTING AND PROCESSING PIPELINE
In this section we describe the ingesting and processing pipeline. This component is
developed to retrieve the OER material metadata from the providers’ site – either
through their API or through retrieving the metadata from their website – and send it
through the pipeline which processes the material metadata, enriches it and stores it
in the database. Figure 2 shows the components that this section describes. Most of
the pipeline’s components are connected with Apache Kafka – a data messaging
system – which enables distribution of data across multiple machines (see section 3.4).
The code for running the ingesting and processing pipeline is available on GitHub [4].
What follows is the description of the components in the pipeline.

Figure 2: The X5GON platform architecture with the focus on the ingesting and processing pipeline. The
pipeline retrieves the appropriate material, process, enriches and stores it in the database.

3.1. MATERIAL COLLECTOR
The first component in the ingestion and processing pipeline is the collector – whose
task is to retrieve the material metadata that the OER provides and send it to the
processing pipeline. It contains a list of different scripts – each corresponding to a
specific OER provider – which are triggered when a user viewed some material. This

is done in the following steps:

1. The collector retrieves the user activity data which is sent by the X5GON
connect service (for more detail see section 7).

2. The collector checks if the OER material was already acquired by the platform.
If the material was acquired, it continues to retrieve and process the next user
activity data. Otherwise, it continues to the next step.

3. Using the user activity data, the collector identifies which retrieval script it needs
and retrieves the OER material metadata. Afterwards, based on the material

P a g e 10 / 27

type (video, audio or text) it sends to the appropriate material processing

pipeline (see section 3.2).

This approach allows us to automatically process OER materials on request without
the periodic checking for new materials. This however does mean the platform will not
contain the newest materials until at least one user views it. To solve this, we have
also provided a REST API endpoint to which an OER provider can send their material
metadata to be processed. More on the upload REST API is described in section 6.1.

Currently, the platform contains scripts for acquiring material metadata from the
following OER providers:

• Videolectures.NET – an award-winning free and open access educational
video lectures repository. Link: http://videolectures.net/

• eUčbeniki – a Slovenian repository containing textbooks for primary and
secondary school. Link: https://eucbeniki.sio.si/

• engageNY – a repository provided by the New York State Education
Department. Link: https://www.engageny.org/

The remaining materials were acquired either by importing data dumps provided by
the corresponding OER providers or by uploading the material metadata through the
upload REST API.

3.2. MATERIAL PROCESSING PIPELINE
The next component in the pipeline is a collective of steps where each process
enriches the material metadata. The steps include formatting the material metadata
into a common format, extracting the content of the material, annotating it with
Wikipedia concepts through a process called Wikification, validating if all of the
required attributes were filled and storing it in the database. In addition, if any of the
steps detect an error, it stores the partially processed material into its own location in
the database for future evaluation of what went wrong.

Figure 3 shows an overview of the steps presented in this section. The material
processing pipeline was developed using qtopology [5], a distributed stream
processing layer. Each step of the pipeline was developed in a single script, which
qtopology joins them together to form a pipeline.

Figure 3: The material processing pipeline. Depending on the materials type, it extracts its content,
enriches and validates it before storing it in the database.

http://videolectures.net/
https://eucbeniki.sio.si/
https://www.engageny.org/

P a g e 11 / 27

3.2.1. SCHEMA DEFINITION
Since OER materials come from different providers and contain different values, we
first format the provided metadata into a common format. In this step, we take the
available material metadata and transform it into a JSON object containing the
following attributes (some of which are optional).

• Title: The material title

• Description (optional): The description of the material

• Provider URI: The website containing the link to the material

• Material URL: The direct location of the material

• Author (optional): The authors of the material

• Language: The ISO 639-1 language code of the material, e.g. sl, en, es, etc.

• Type: The object containing the extension and mimetype of the material

• Date Created (optional): The creation date of the material in YYYY-MM-DD
format

• Date Retrieved: The material retrieval date in YYYY-MM-DD format

• Provider Token: The token associated by the provider of the material

• License: The license of the material, which should be some Creative
Commons version

• Material Metadata (optional): The object containing the metadata acquired
through the acquisition or enrichment process

If any of the required attributes is missing, the material will be detected as partial and
will be stored in a separate data table. Once the material has been formatted it is sent
to the next step, which is content extraction.

3.2.2. CONTENT EXTRACTION
In this step we extract the content of the material and represent it in a text format.
Currently, the platform is able to extract the content from three different types of
material – text, video and audio.

Text. Extracting the content from text documents is performed using the textract [6]
library – a library for extracting raw text from documents. The library is able to extract
content from a range of text document formats (e.g. word documents, power point
presentations, pdfs, etc.) and returns the content of the document in text form. The
output text preserves the structure of the document, which can be afterwards used in
the content enrichment process.

Video and Audio. To retrieve the content of video and audio materials the platform
sends a request to the Transcription and Translation Platform (TTP) [7], which is
maintained by Universitat Politècnica de València. The platform provides an API
endpoint through which we are able to request transcriptions and translations in a
variety of languages - Spanish, English, Slovene, German, French, Italian,
Portuguese, and Catalan - and formats. The platform requests for results in the
mentioned languages and in three formats - dfxp, webvtt, and plain - which are the
formats most used by the video OER providers. Doing this it will enable OER providers
to integrate the transcriptions and translations into their videos.

The TTP platform also provides translation of textual documents, but does not preserve
the structure of the provided document. Because of this, we have decided to omit the

translation step from text documents in the processing pipeline.

More on the Transcription and Translation Platform capabilities can be found in
Deliverable 3.4 – Early support for cross-lingual OER.

P a g e 12 / 27

3.2.3. CONTENT ENRICHMENT
Once the materials content has been extracted, we enrich the material metadata. This
is done through the processed called Wikification. It identifies and links the textual
components to the corresponding Wikipedia pages. To retrieve the annotations, we
used Wikifier [8], a web service which returns a list of Wikipedia concepts that are most
likely related to the textual input. The web service also provides cross- and multi-
linguality which enables extracting and annotating materials in different languages.

The output annotations contain the following attributes.

• Concept URI: The Wikipedia concept identifier in the material language

• Concept Name: The annotation name in the material language

• Concept Secondary URI: The annotation identifier in the English Wikipedia

• Concept Secondary Name: The annotation name in the English Wikipedia

• Language: The language code of the Wikipedia database from which the
annotation was taken

• Wiki Data Classes: A list of classes to which the annotations belong according
to WikiData [9]

• Cosine: The cosine similarity between the Wikipedia page corresponding to
the annotation and the material content

• PageRank: The pagerank [10] of the annotation

• DBPedia IRI: The DBPedia [11] identifier

• Support Length: The number of keywords that support the relevance of the
Wikipedia concept to the material

Wikifiers input text is limited to 20k characters, because of which processing longer
text cannot be done. To this end, we have split longer documents into chunks of at
most 10k characters and pass them to Wikifier. Here, we are careful not to split the
document in the middle of a sentence, if possible.

Afterwards, we send each chunk of text to Wikifier and retrieve the Wikipedia concepts
that are related to it. To calculate the similarity between the concept and the whole
material we aggregated the concepts by calculating the weighted sum – which takes
the relevant coverage of the chunk to the whole text and multiply it with the cosine
similarity of the Wikipedia concept found in the corresponding chunk. We perform this

for all concepts and assign the result to the material metadata.

3.2.4. ATTRIBUTE VALIDATION
The last step before storing the material into the database is to validate if all of the
required attributes are present in the material metadata. The validation is performed
with the use of the jsonschema [12], a library for validating the schema of JSON
objects. For each material metadata object, the systems check if the required attributes
are present, as well as the extracted material content in text and Wikipedia concepts.
If all required attributes are present, the material metadata is stored in the database.
Otherwise, we store the metadata in a separate data table for future evaluation of the
missing data.

3.3. PIPELINE PROCESS ANALYSIS
The ingesting and processing pipeline have processed more than 91k material
metadata – out of which 1.7k materials were partially processed. The reason for the
partial material processing is due to the structure of the pdfs which instead of text can
be a set of images – from which we are unable to extract the content.

P a g e 13 / 27

While text materials are usually processed in under a minute, video materials take
longer due to the intense process of generating transcriptions and translations, e.g. to
generate transcriptions it takes approximately the duration of the video or audio
material. Because of this, we have initialized multiple pipelines to enable parallel
processing of materials: five pipelines for processing text materials and three pipelines

for processing video and audio materials.

3.4. REAL-TIME DATA DISTRIBUTION
The ingesting and processing pipeline was designed to allow data distribution across
multiple machines – enabled with the use of Apache Kafka. An instance of the Apache
Kafka service as a Docker [13] container that was initialized using an existing
Dockerfile for Apache Kafka [14].

In addition to the mentioned production machine, we initialized an additional
(development) machine on the Pošta Cloud Infrastructure – used for testing and
development of services, implementing methods and storing processed data. The
development machine also retrieves the processed materials and enables an almost-
to-real-world development experience. Figure 4 shows the data distribution flow
between the machines.

Figure 4: The dynamics of data distribution with Apache Kafka. It shows the data distribution flow between
the production and development machines.

P a g e 14 / 27

4. DATABASE
There is a wide range of database systems that are available from different providers.
To decide which one to integrate in the platform we set a list of requirements:

• Non-dynamic schema. We believe that to have a robust database where the
platform would exactly know which fields are available in the data tables, the
database must not allow dynamic schemas (e.g. where each record in the
database contains different values). With this, we have a concrete schema of
the data available in the database, making it more predictable what to expect.

• Error instead of warning. When a record contains a value that does not match
the restrictions set in the schema, a database system can decide what to do
with such values. Some systems modify the value to match the schema
restriction, which we do not want – thus we want a system that throws an error
and notifies the system when such an event happens.

These restrictions narrowed the list of database systems – our finally deciding with
PostgresQL [15]. The database system was integrated into the X5GON platform and
contains the acquired data.

4.1. DATABASE STRUCTURE
The database was structured to contain both OER material metadata and user activity
data – acquired through the X5GON Connect Service or the embedded
recommendation list. In addition, the database contains user and material models used
in the recommender engine. The script for creating the database structure is available
on GitHub [16] – it is based on the proposed database structure described in Learning
Analytic Engine 2.0 (D3.2) deliverable. Figure 5 shows the database schema of the
most relevant data tables. What follows is a description of each table in the figure.

Figure 5: The database schema of the most relevant data tables. It consists of data from user activities
and OER material metadata.

P a g e 15 / 27

OER Materials. This table contains all of the open educational resources metadata
that were successfully processed by the ingesting and processing pipeline. It contains
the following columns:

• ID: The material ID

• Title: The material title

• Description: A short description about the material

• Authors: The authors associated with the material

• Language: The language in which the material is presented

• Creation Date: The date when the material was created

• Retrieved Date: The date when was the material retrieved

• Type: The material type (short)

• Mimetype: The full material mimetype

• License: The license of the material

OER Materials Partial. This table contains all of the open educational resources
metadata which were not fully processed by the ingesting and processing pipeline. The
columns in the table is similar to the ones in the OER Materials table with an additional
column named “message” which contains the error message triggered when

processing the material.

Material Contents. The table contains the extracted text, transcriptions and
translations of the successfully processed materials. It contains the following columns:

• ID: The content ID

• Language: The language in which the content is present

• Type: The content type (e.g. extracted text, transcriptions and translations, as
described in section 3.2.2)

• Extension: The content extension (e.g. the formats described in section 3.2.2)

• Value: The body of the content

• Material ID: The ID of the material from which the content was extracted in the
OER Materials table

Providers. This table contains the provider information. It contains the following
columns:

• ID: The provider ID

• Token: The token associated with the provider

• Name: The providers name

• Domain: The provider domain – where their repository is found

• Contact: The contact to the lead maintainer

URLs. The table containing all of the URLs that were collected through the materials
or user activity data. The table contains the following columns:

• ID: The ID of the URL

• URL: The actual URL address

• Provider ID: The ID of the associated provider in the Providers table

• Material ID: The ID of the associated material in the OER Materials table

Contains. This table contains information about which URLs are found on the website
corresponding to a different URL. It serves as a relation table for the records in the

URLs table. It contains only two columns:

P a g e 16 / 27

• Container ID: The ID of the record in the URLs table, which contains one or
more other URLs

• Contains ID: The ID of the record in the URLs table, which is found in the
website associated with the container URL

Cookies. This table contains the information about the user associated cookies. The
cookies serve as user identifiers – without having to store any user data, such as its
name, location or IP. The table contains the following columns:

• ID: The ID of the cookie

• UUID: The random string serving as the user identifier

• User Agent: The user agent (technology specification) associated with the
cookie

• Language: The language configuration of the browser associated with the
cookie

User Activities. The table contains information about the users’ activities on the OER
repositories with the integrated X5GON Connect Service (see section 7). The table
connects the cookies and URLs tables and contains the following columns:

• ID: The ID of the user activity record

• Timestamp: The time of when the user activity happened

• Referrer URL: The URL from where the user came to visit the current website

• Cookie ID: The ID of the cookie corresponding to the acting user

• URL ID: The ID of the website URL where the user triggered the activity

4.2. DATABASE STATISTICS
This section shows the database statistics – mainly the number of records in each
database table. Table 1 shows the number of records in different database tables at

the time of this writing.

Database Table Number of records

OER Materials 89,923

OER Materials Partial 1,741

Material Contents 218,656

Providers 14

URLs 189,322

Contains 89,901

Cookies 438,648

User Activities 1,547,458

Table 1: Number of records in the database statistics.

In the duration of the project the platform has acquired a large amount of OER
materials. In addition, we see that the number of unique users which accessed the
OER repositories with the integrated X5GON Connect Service is large. The number of
user activities is also large – providing rich information which can be used in the
Learning Analytics and Recommender Engine development. Additional database
statistics can be found in deliverables Final Prototype of User Modelling Architecture
(4.2), Final Prototype of Recommendation Engine (4.4), and Prototype of Cross-Site

Recommendation Engine (4.5).

P a g e 17 / 27

5. PLATFORM SERVICES
This section is dedicated to the existing and planned services in the platform. There
are three main types of services – the recommender engine, the learning analytics tool
and the quality assurance tool. The services have access to the platform database
from which they take the appropriate data for building the models. In addition, some of
the service functionalities can be accessed via the platform API (see section 6). Figure
6 shows the highlighted architecture components that this section focuses on.

Figure 6: The X5GON platform architecture with the focus on the X5GON services. The services retrieve
and stores the resulting data to the database.

What follows is a short description of each service with the references to the document
which contains a longer description of the functionality and methods used in the

service.

5.1. RECOMMENDER ENGINE
The recommender engine produces recommendations of materials and bundles. It
analyses the data produced by the material processing pipeline and user activity data,
and creates material and user models. These models are then employed to provide a
list of recommendations based on the user query.

More can be found in deliverables Final Prototype of User Modelling Architecture (4.2),
Final Prototype of Recommendation Engine (4.4), and Prototype of Cross-Site
Recommendation Engine (4.5).

5.2. QUALITY ASSURANCE TOOL
The quality assurance models that are developed by X5GON project mainly enable
two services: 1) Extraction of quality features from educational resources, and 2)

Providing quality score prediction for Open Educational Resources.

P a g e 18 / 27

The first service envisages a feature that will present 13 quality features that are
extracted from the text representation of the educational resources. The features
categorise into multiple quality verticals such as Understandability, Authority,
Presentation, Freshness and Topic Coverage. These features can be extracted from
a variety of educational resources that span across different modalities (e.g. video,
audio, text etc.). These features will provide informative summary of how different
quality features are present in a document enabling the learner/ stakeholder to take a
more informed decision taking these features into account. A detailed description of
how these features were identified and extracted can be found at Deliverable D1.1 -

Quality Assurance Models.

The second service envisages creating scalable, automatic quality evaluation models
using the above features. Currently, videolectures data has been used to train a
supervised learning quality model that can perform with 71% pairwise accuracy when
comparing pairs of lectures using model predictions. Any relevant open educational
dataset can be used to train the quality model using the above features and the model
performance can be evaluated.

A detailed discussion about how the models are developed is outlined in Deliverable
D1.1 - Quality Assurance Models. Furthermore, Deliverable D1.2 - Evaluation of
Quality Assurance Models discusses how these models are evaluated.

5.3. LEARNING ANALYTICS TOOL
The learning analytics tool currently provides two public models – the difficulty and
order models.

Difficulty Model. This model is able to measure the resource hardness based on
lexicon and grammar properties of the materials. An implementation for this approach
is available in the WP 3 API through the service wikification2conpersec.

Order Model. One of the learning approaches is to have a logical order during the
learning process when consuming the educative resources. So, this second model
tries to evaluate a pair of resources and give a relative order to consume these
resources based on the “continuous wikifier model”. The main idea of this method, is
to catch the common concepts between the resources, and to use their distribution
over the resources to infer the order. More precisely, we assume
the keys concepts to predict the order are those, which are present in the end a
resource and in the beginning of the other. From our observation these patterns
correspond to a concept introduction, and our goal is to choose the order which
maximizes this kind of transition in order to have a fluid transition between the
resources and to introduce as many prerequisites as possible. Implementation for this
approach is available in the WP3 API through the service continuouswikification2order.

Further details on these metrics can be found in the Learning Analytic Engine 2.0
(D3.2) deliverable.

P a g e 19 / 27

6. PLATFORM API
This section describes some of the platform API. The API enables accessing different
services, as well as access to the processed OER material metadata. The platform
API is publicly accessible and it currently allows to perform the following requests:

• Upload OER material metadata;

• Retrieve the processed OER materials;

• Query for OER material metadata;

• Request for different types of recommendations.

Figure 7 shows which components of the X5GON platform architecture are the focus
of this section.

Figure 7: The X5GON platform architecture with the focus on the components associated with the
platform API. The API retrieves the user request and proxies it to the appropriate service.

What follows is a description of some of the supported REST API. A full list of available
API endpoints is available on the platform website – under the documentation [17].

6.1. MATERIAL UPLOAD API
The material upload REST API endpoint enables dynamic uploading of material
metadata to the X5GON pipeline. The endpoint enables OER providers to upload their
material metadata to be processed and be stored into the database. Afterwards, the
provider can access the extracted content and annotations, as well as enabling their
materials to be present in the recommendations provided by the X5GON platform.

The upload endpoint requires an API key which can be provided by one of the platform
maintainers.

P a g e 20 / 27

In addition, the endpoint validates if the sent material metadata is in the correct format
and if all required attributes are present. If not, the endpoint returns the information
about the number of successfully uploaded materials, as well as the submission errors,
describing the number of materials that are in an incorrect format, and the description
of the error for each invalid attribute. Once the material has been successfully

submitted and processed, it can be retrieved through the material retrieval API.

6.2. MATERIAL RETRIEVAL API
The material retrieval API endpoint allows one to retrieve material metadata
information from the database. The retrieval is performed by providing a set of
(optional) query parameters.

• Languages: a comma separated list of ISO 639-1 language codes

• Limit: The number of records to be returned

• Offset: The number of records from a collection to skip

• Page: The page number of the record collection

Afterwards, the endpoint returns a list of material metadata that correspond to the
provided query parameters. The material metadata returned by the endpoint contains

the following attributes:

• Material ID: The unique ID of the OER material

• Title: The title of the OER material

• Description: The description of the OER material

• URL: The URL of the OER material

• Language: The language of the OER material in ISO 639-1 code

• Type: The type of the OER material (e.g. text, video or audio)

• Mimetype: The mimetype of the OER material

• Contents IDs: The IDs of the material contents (e.g. extracted content text,
transcriptions and translations)

• Provider: The JSON object containing the provider’s name and domain

The content IDs can be used to retrieve the specific transcription and/or translation of
the material – and including them as captions in the material video player – through a
designated API endpoint. That endpoint returns the following content attributes:

• Content ID: The unique ID of the content

• Type: The type of content (e.g. text_extraction, transcription, or translation)

• Extension: The extension of content (e.g. plain, dfxp, or webvtt)

• Value: The JSON object containing the value of the content

• Language: The language of the content in ISO 639-1 code

6.3. MATERIAL SEARCH API
The material search API endpoint enables users to search through the indexed OER
materials. The material search functionality is part of the Recommender Engine
presented in deliverable 4.1 The search is initialized by providing a set of (optional)

query parameters.

• Text: The seed text from which the system finds the relevant OER materials

• Type: The type of OER materials to retrieve (e.g. all, video, audio, and text).
The default value is all

• Page: The page number of the provided list of relevant OER materials. The
default value is 1

P a g e 21 / 27

For a given user query text, it provides a list material metadata with the following

attributes:

• Material ID: The unique ID of the OER material

• Weight: The number representing the relevance of the OER material. Materials
with a greater weight means bigger relevance to the user query

• URL: The URL of the OER material

• Title: The title of the OER material

• Description: The description of the OER material

• Provider: The name of the OER material provider

• Language: The language of the OER material in ISO 639-1 code

• Wikipedia: A list of extracted Wikipedia concept objects, where each object
contains the concepts URI and its support length (as described in section 3.2.3)

• Type: The type of the OER material (e.g. text, video or audio)

In addition, the endpoint provides additional metadata such as the total number of
found OER materials and the maximum number of pages.

6.4. MATERIAL RECOMMEND API
The material recommender API endpoint provides recommendations based on the
user preferences. The API proxies the request to the Recommender Engine which it
then processes and returns the recommendations. Currently, the platform API provides
four types of recommendations:

OER Materials. This type of recommendation is similar to the material search API
endpoint. For a given user query text, it provides a list of most relevant

recommendations.

OER Bundles. This type provides a list of recommended educational bundles – where
a bundle is defined as the website containing one or more OER materials. Contrary to
the OER Materials type, this endpoint does not accept user query text as an input.
Instead, it accepts the URL of the educational bundles for which the user wishes to
find similar bundles.

Personalized. This type provides a list of recommended educational bundles that are
personalized to the particular user. This endpoint does not require any query

parameters since the only value it requires is the user identifier (e.g. cookie ID).

Collaborative Filtering. This type provides a list of recommended educational
bundles provided by the collaborative filtering algorithm. Similar to the personalized
type, it does not require any query parameters – only the user identifier.

P a g e 22 / 27

8. X5GON CONNECT SERVICE
Part of the project’s goals is also to understand how the users are consuming the
educational material and provide insight for the Learning Analytics and Recommender
Engines tasks. In the deliverable 2.1 – requirements & architecture report, we have
foreseen the use of a library for acquiring information about the user activity on the
OER repositories. We have developed the X5GON user activity tracker snippet library
and rebranded it to the X5GON Connect Service. This section describes the
functionalities of the Connect Service and the components associated with it.

8.1. APPLICATION FORM
The Connect Service allows the OER repository to get an insight into which materials
the users are consuming and how they are transitioning from one material to another.
But before the repository integrates the service into their system, they need to register
to the X5GON platform, where they get a unique token. The token is a short string
which enables the platform to identify which repository is being accessed. In addition,
it also serves as the ID for accessing the connect services information on their
repository – how many unique users have visited their repository and how many times.
Figure 8 shows a snapshot of the application form.

Figure 8: A snapshot of the application form.

The form does not request a lot of information – only the OER repository name, its
domain and the contact information of the person responsible for the service

integration into the repository.

8.2. SETTING UP THE CONNECT SERVICE
The connect service is design for easy integration – at the same time when the user
retrieves the unique token they are also informed about the privacy policy [18] including
what kind of user information the service collects, how to integrate the library into their
system and the security measurements (e.g. subresource integrity [19]) are provided
at service integration. In addition, we provide a solution for managing cookie policies

P a g e 23 / 27

enabled by the Cookie Consent [20] API – providing a thorough description of how to
use the API in combination with the Connect Service. This solution enables the visiting
user to decide if they want the library their send activity information to the platform –
disabling the functionality if they do not provide an active consent.

Note that we ask for the connect service to be integrated only on the repository pages
which contain OER materials. This is because the service is intended to retrieve
information on the materials that were visited by a user. Currently, the service does
not have any capabilities of detecting if the page contains materials or not.

8.3. CONNECT SERVICE FUNCTIONALITY
Once the connect service is integrated in the repositories and the user gives an active
consent, the service performs the following actions.

1. Assigns a cookie ID to the user. When the user first visits an OER repository
with an integrated Connect Service, the service assigns a cookie ID which is
then used to identity the user in the future. This ID is randomly generated, does
not take any user data into account and cannot be used to identify the user.

2. Sends user activity data to the platform. When a user visits a page with an
integrated connect service, it sends the following user activity data to the
platform:

• User ID: the cookie ID used to identify the user accessed the learning
material

• Material URL: The material identifier and the link that the user visited

• Referrer URL: The URL from which the user arrived to the material

• Access Date: The date of the visit

• User Agents: The information about the technology used to access the
materials

• Language: the language configuration of the user’s technology

The sent data is then stored in the database and used in the ingesting and processing
pipeline (see section 3) for material retrieval. In addition, the user activity data is then
used in both the Learning Analytics and Recommender Engine research for
understanding the education process of the users and for creating personalized
recommendations – more is described in deliverables Learning Analytics Engine 2.0
(3.2), Final Prototype of User Modelling Architecture (4.2), Final Prototype of
Recommendation Engine (4.4), and Prototype of Cross-Site Recommendation Engine
(4.5).

The Connect Service has also been modified and extended as a Moodle plugin –
enabling integration of the connect service into the Moodle LMS. More is described in
the deliverable Learning Analytics Engine 2.0 (3.2).

P a g e 24 / 27

9. FUTURE PLANS
Even though this document describes the final server-side platform, we have identified
parts of the platform which could be improved. This section describes the future work
for the platform.

9.1. CONTENT EXTRACTION
The ingesting and processing pipeline is able to process large volumes of text, video
and audio materials – but due to the variety of formats and content there is still some
room for improvement.

Text Materials. The current library for extracting content is unable to represent
equations in a meaningful way. The equations are transformed into a set of characters
which are not informative. In addition, the extracted content does not preserve the
format and structure. To this end, we will consider using and developing tools which
will solve these problems.

Additional Enrichment Components. To have a better insight of the extracted
content we are considering to develop additional components that will a) extract named
entities, and b) provide word-level information of the contents works. In addition, we
will explore the option of mapping the learning materials to scientific fields.

9.2. SERVICE INTEGRATION
In the current state, we have three services that are in the platform integration process.
While the recommender engines and learning analytics tools are already integrated
and are ready for use, the quality assurance is in late-development phase and is
planned to be integrated before the end of the project. In addition, we will decide which
functions of the services we will make public – the decision will be based on the results
of the services, its implementation and use-cases.

In addition, we are considering to develop a quick-to-integrate-service component
which will enable easy integration of services that will be developed in the third year of
the project, as well as after it ends.

9.3. PROCESS ANALYSIS COMPONENTS
To analyse the different processes of the platform and to have an overview of the data
in the database we intend to develop components that will analyse these aspects of
the platform. In addition, we will develop a GUI through which we will be able to monitor
and control the processes, as well as see the dynamics of the data.

9.4. CONTINUOUS INDEXING OF OER MATERIALS
To have a wide range of learning materials we will continue acquiring and indexing
learning material. We will continue to write scripts for acquiring the material metadata.
In addition, we will find repositories which will be prepared to share their OER material
metadata directly by uploading the material metadata through the material upload API
(see section 6.1).

P a g e 25 / 27

10. CONCLUSION
In this document we present the final server-side platform architecture. We present the
four main components, e.g. the database, ingesting and processing pipeline, services
and platform API, and how they are connected. The platform is running on two
machines on the Pošta’s Cloud Infrastructure – one machine containing the production
instance, and the other containing the development instance (used for development
and testing purposes).

While the server-side platform is mostly developed we still identified part of the platform
that could be improved, more precisely extraction and enrichment components of the
ingesting and processing pipeline, finalize the integration of existing services,
developing analysis components for monitoring and controlling the platform processes,
as well as continuous indexing of OER materials.

P a g e 26 / 27

REFERENCES

[1] The Apache Software Foundation, “Apache Kafka,” 5 August 2019. [Online].

Available: https://kafka.apache.org/.

[2] Jožef Stefan Institute, “JozefStefanInstitute/x5gon: Connecting and processing
content from OER repositories,” [Online]. Available:
https://github.com/JozefStefanInstitute/x5gon. [Accessed 8 August 2019].

[3] Jožef Stefan Institute, “Home | X5GON Platform,” [Online]. Available:

https://platform.x5gon.org. [Accessed 8 August 2019].

[4] Jožef Stefan Institute, “x5gon/src/server/preproc at master -
JozefStefanInstitute/x5gon,” [Online]. Available:
https://github.com/JozefStefanInstitute/x5gon/tree/master/src/server/preproc.

[Accessed 8 August 2019].

[5] V. Jovanoski, “qtopology | Distributed stream processing layer,” [Online].
Available: https://qminer.github.io/qtopology/. [Accessed 8 August 2019].

[6] D. Bashford, “textract - npm,” [Online]. Available:

https://www.npmjs.com/package/textract. [Accessed 8 August 2019].

[7] J. a. G. D.-M. G. V. a. C. J. a. J. A. Iranzo-Sánchez, “The MLLP-UPV Supervised
Machine Translation Systems for WMT19 News Translation Task,” in Proc. of
Fourth Conference on Machine Translation (WMT19), Florence (Italy), 2019.

[8] G. L. M. G. Janez Brank, “Annotating Documents with Relevant Wikipedia
Concepts,” in Proceedings of the Slovenian Conference on Data Mining and Data
Warehouses, Ljubljana, Slovenia, 2017.

[9] Wikimedia Foundation, “Wikidata,” [Online]. Available: https://www.wikidata.org/.

[Accessed 8 August 2019].

[10] Wikipedia, the free encyclopedia, “PageRank - Wikipedia,” [Online]. Available:
https://en.wikipedia.org/wiki/PageRank. [Accessed 8 August 2019].

[11] DBpedia, “DBpedia,” [Online]. Available: http://dbpedia.org/. [Accessed 8 August

2019].

[12] T. d. Grunt, “tdegrunt/jsonschema: JSON Schema validation,” [Online]. Available:
https://www.npmjs.com/package/jsonschema. [Accessed 8 August 2019].

[13] Docker, Inc., “Enterprise Container Platform | Docker,” [Online]. Available:

https://www.docker.com/. [Accessed 8 August 2019].

[14] wurstmeister, “wurstmeister/kafka - Docker Hub,” [Online]. Available:
https://hub.docker.com/r/wurstmeister/kafka/. [Accessed 8 August 2019].

P a g e 27 / 27

[15] “PostgreSQL: The world's most advanced open source database,” The
PostgreSQL Global Development Group, [Online]. Available:
https://www.postgresql.org/. [Accessed 27 03 2018].

[16] Jožef Stefan Institute, “x5gon/create-postgres-database.js at master -
JozefStefanInstitute/x5gon,” [Online]. Available:
https://github.com/JozefStefanInstitute/x5gon/blob/master/src/load/create-
postgres-database.js. [Accessed 8 August 2019].

[17] Jožef Stefan Institute, “API Documentation | X5GON Platform,” [Online].
Available: https://platform.x5gon.org/documentation. [Accessed 8 August 2019].

[18] Jožef Stefan Institute, “Privacy Policy | X5GON Platform,” [Online]. Available:
https://platform.x5gon.org/privacy_policy. [Accessed 8 August 2019].

[19] moz://a, “Subresource Integrity - Web security | MDN,” [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity.
[Accessed 8 August 2019].

[20] Osano, Inc., “Cookie Consent by Osano | The most popular solution to the EU
cookie law,” Osano, Inc., [Online]. Available: https://cookieconsent.osano.com/.
[Accessed 8 August 2019].

