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ABSTRACT  
Learning Analytics Engine is the analytics engine for the analysis of learning and 
testing aspects, links with educational theories, affective computing, etc. including 
cross-modal cross-lingual and cross-cultural aspects. The information generated from 
the tools developed in WP1 and WP2 need to be cross referenced in order to obtain 
high level information.  

In this deliverable we present the Learning Analytics Machine 1.0 based on the data 
collected by X5-GON so far, thus essentially content. 

The LAM 1.0 is an API allowing access to information about this content. This 
information can be visualized through a dashboard which also allows a simple 
navigation through the accessible learning material. 

The dashboard can accessed online : http://wp3.x5gon.org  

We also present separate analyses concerning user intent and the capacity to find 
missing resources. 

http://wp3.x5gon.org/
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1. INTRODUCTION 

1.1 THE GENERAL GOAL OF WP3 

The different high level recommendations which X5-GON is to make in the future will 
depend on understanding as precisely as possible both the resources which are 
available to each user and the user’s activities and needs, whether we are talking 
about the user for which a recommendation or a learning proposal is made or the 
users in general. The purpose of the learning analytics machine (LAM) is to maximize 
the impact of the information received, whether these are transcriptions of the OER or 
logs of activity and transform this information into knowledge which can be used for 
high level analysis. 

Technically and internally, the LAM is to make use of the data extraction tools 
developed in WP2 “Analytics Infrastructure, Services and API” and to allow WP4 
“Recommendation Engine” to obtain the information on which the recommendations 
are to be made. 

As with other components, the LAM is built following the cascade model with its year 
1 version (LAM 1.0) operational and based on the data available at that point. 

1.2 WP3 IN THE PROPOSAL 

In the proposal we wrote:  

Learning Analytics Engine (NA) is the analytics engine for the analysis of learning and 
testing aspects, links with educational theories, affective computing, etc. including 
cross-modal cross-lingual and cross-cultural aspects. The information generated from 
the tools developed in WP1 and WP2 need to be cross referenced in order to obtain 
high level information. It will propose personalized learning as an individualized 
navigation through the OERs by the different sites. A more complex issue will consist 
in answering the following: what resource should the system propose to a specific 
learner, at a specific moment? This requires to be able to predict the intent of the 
user. Finally, prediction and recommendation will depend on collected personal 
information. The ethical issues related with this collection and with what should be 
allowed, will be discussed, and compared with international standards. A specific 
effort will be made here. 

Learning Analytics Engine will automatically build and maintain 3 maps which all 3 
evolve with time and usage: 

(1) A content map of resources: each open education resource is linked fine-grain 
(this means that a video is not a unit!) with other resources. Language markers and 
topic maps are primarily used to project the resources in high dimensional spaces 
and allow their comparison and alignment. The analysis should be fine grained: it is 
not about linking a video with a text, but linking a moment of video with a piece (a 
paragraph) in a text. 

(2) A map of users: a user can be seen as a distribution of skills. These skills are 
again built from topic maps. Annotations, forum discussions, student interactions, 
results from games and quizzes will be recovered and organised for this purpose. 
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(3) At any moment of a learning activity, the intent will be measured. The intent of the 
user at a particular moment of a learning activity corresponds to what she is trying to 
achieve at that moment. For example, if a user is watching a particular video and 
stops it, can we guess why she has stopped it? Has she heard something she can't 
understand? Was it too difficult or too easy? Is she wanting to hear the same thing in 
another language? To be provided some material which follows an alternative 
pedagogy? The discovery of intent has been identified as a crucial component in 
similar systems. Between the elements towards the discovery of intent figures 
affective computing – i.e. identifying mood –, which will be researched in X5gon. 

And Deliverable 3.1 is introduced as follows: 

D3.1 Learning Analytic Engine 1.0 (M12)  
Building the alpha version of the system. This version will rely essentially on language 
modelling for the conception of the different maps. Building of evaluation tools and 
methods to monitor the progress to be made with the different choices.  

1.3 THE WORK AND HOW IT WAS DONE IN 2018  

WP3 has been led by Université de Nantes (F). In Nantes the main contributors to 
this deliverable have been: 

o Anthony Allaire 

o Walid Ben Romdhane 

o Colin de la Higuera 

o Marie Humbert-Ropers 

o Mica Ménard 

The work benefitted also from the assistance and collaboration of our partners both 
during the technical meetings and during many formal and less formal 
communications. 

1.4 THE REST OF THIS DOCUMENT 

This document contains a presentation of the deliverable D3.1 which can be used 
online, with a presentation of its functionalities and of the choices which were made. 

In Section 2 we present the version 1 of the LAM, with the interface which allows to 
understand its features. 

In Section 3 we present other work done during 2018 and which are relevant to the 
Learning Analytics task. 

In Section 4 other types of work are presented, concerning the aspects of validation 
and contributing to a Moodle version of the snippet used to monitor user activity. 

2. THE LAM 

The Learning Analytics Machine for year 1 (LAM 1.0) aims at providing a simple 
navigation through the learning data provided by the 3 pilot sites. 
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2.1 THE DATA FOR THE LAM  

The data used for the Learning Analytics Engine 1.0 was collected in June 2018 from 
the 3 pilot sites of X5-GON: 

 Videolectures (Slovenia): the collection consists of 17972 videos over 8 

languages, all transcribed and, when necessary, translated 

 University of Osnabrück (Germany): 276 videos in German, transcribed and 

translated to English. 

 Universidad Politécnica de Valencia (Spain): 4166 videos in Spanish and 

Catalan, translated to English 

On the other hand, there were not enough user logs to identify the user data which 
was to be analysed. Preliminary studies corresponding to similar data and questions 
are presented in Section 3.  

2.2 REPRESENTING THE RESOURCES 

The resources for the LAM 1.0 are videos. These have been transcribed through the 
tools developed in WP5 and then translated. 

The starting point for WP3 is therefore raw text in English, with the text in other 
languages also available. 

This raw text is cleaned and transformed before being vectorised. The vectors are the 
representation chosen for comparison and manipulation in the LAM 1.0. 

2.2.1 Preprocessing the transcriptions 

The following operations are performed: 

o The original strings are tokens separated by whitespaces (no punctuation), 

o Tokenization on whitespaces, 

o Lemmatization, 

o Part-of-Speech filtering: we keep only the nouns, verbs and adjectives, 

o Stop-words removal. 

2.2.2 Vector Representations 

In order to quantitatively compare documents with one another, text data is projected 
into a vector space. Two kinds of vector representations are considered - namely bag 
of words and word embeddings. 

2.2.2.1 Bag of Words 

A bag-of-word representation is a n-dimensional vector where n is the number of 
distinct tokens in the corpus. 

The values of the vectors can be computed in several ways, of which two were used 
in this experiment. The first method consists in counting the term frequencies for each 
dimension. The second is similar except that the values are weighted by their TF-IDF 
score (Salton, et al. 1975, Salton & McGill 1986, Salton & Buckley 1988). 
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2.2.2.2 Word Embeddings 
Another kind of vector representation for text is word embeddings. Two models were 
used - Word2Vec (Mikolov et al. 2013) and GloVe (Pennington et al. 2014). The 
Google News and Common Crawl (42 billion words) pretrained models were 
respectively used: 

o https://code.google.com/archive/p/word2vec/  

o https://nlp.stanford.edu/projects/glove/  

2.2.3 Evaluating the different representations 

The alternative techniques presented in Section 2.2.2 have been tested. At this point 
of the project the only semi-supervised data available corresponded to labels which 
were attached to resources from the videolectures site. We evaluated our 
representations against this labelling following the technique described in Section 4.2. 

2.3 THE API  

An application programming interface (API) was developed as the server side 
application to allow for fast and flexible interactions with a client. Its main purpose is 
to enable the instantaneous retrieval of resources based on the client's demands. To 
this extent, a major requirement of this API is speed. 

Two services were created in LAM 1.0 - one for retrieving similar resources to a given 
resource and the other for keyword search. 

This API was developed in Python 3.6 using the Flask (0.12.1) and Flask API (1.0) 
libraries. 

It should be noted that in LAM 1.0 the client was essentially the interface described in 
Section 2.4, but in the next versions of the LAM the client will be the different 
downstream work-packages. 

2.3.1 Nearest-Neighbour Retrieval 

This service is used to retrieve other resources which are similar to the one being 
currently visited. Each document is represented in the form of a vector (GloVe) and 
the k documents with the lowest cosine distances (k-nearest neighbours) are 
returned. 

Given the requirement for speed of the API, the vector representations are stored to 
improve performance. But the distances themselves are computed on the fly. 

Additionally, a filter was implemented for the user to discriminate resources. This filter 
takes the form of check-boxes where each option further restrains the potential 
matching documents. The matching resources are determined by intersecting the 
results of all the options (with the exception that choosing no option selects all 
documents). 

2.3.2 Keyword Search 

The API also supports a simple search function which segments the input text into 
tokens (or keywords). For each of the keywords, all documents containing that 
keyword are stored in a set. The intersection of all sets is then returned to the client. 

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
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2.3.3 API Structure 

The API uses one internal module for nearest-neighbour retrieval. For speed 
performance purposes the data is not fetched from a database but directly from 
binary files, which contain every document, the corresponding filenames and vector 
representations as well as the information displayed on the user interface. 

It should be noted that a database is also produced as a secondary result of the 
gathering and organisation of the data.  

2.3.4 Future developments 

No relevance measure was determined to return the most related documents to the 
client. 

In the future, the services will be designed following the queries made by the other 
work-packages. 

2.4 THE INTERFACE  

In order to visualize the action of the API we have chosen to present it through a 
simple interface. 

The interface follows ideas developed in project MICAH (Bois et al. 2017).  

2.4.1 The goals of the interface 

This interface is not designed for an advanced user experience. The interface should 
not be interpreted as a recommendation dashboard: recommendations are to be 
made in WP5. Its goal is essentially to allow an internal visualization and navigation 
of the data. 

Furthermore, a second goal for the interface is to allow X5-GON to imagine new 
functionalities or to envisage information which can be used for new learning 
situations. 

2.4.2 Using the interface 

The interface allows first to search for a resource using a very simple search engine 
(screen 1, Fig. 1). A list of matches is returned (same screen). 

When a resource is chosen from the list, screen 2 (Fig. 2 the main screen) is 
provided, allowing the analytics centred on the chosen resource to be examined. 

Navigation can take place: 

o By entering a new term in the search engine. 

o By single-clicking on any node of the graph: the relevant information 
concerning this resource appears in areas 2,3, 4, 6, 8 and 9. 

o By double-clicking on any node of the graph: the chosen node becomes the 
current central resource and screen 2 is reloaded with a graph containing this 
new resource as centre. 
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Figure 1: Screen 1. The search engine and its results 

 

 

 

Figure 2: Screen 2. The navigation tool for LAM 1.0 (top) 

 

2.4.3 The different areas of the interface 

We present briefly the different zones of the interface. Each is intended to propose a 
functionality or an access to a particular analytics. 

6 
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2.4.3.1 The filters 

X5-GON aims at providing navigation and recommendation across modes, 
languages, cultures, themes and sites. So these are the 5 filters selected 
corresponding to languages, modalities, scientific domains, and socio-cultural 
contexts. In Year 1 some of these filters are just proof-of-concepts: indeed, if 
choosing a site or a language is meaningful, it remains difficult to imagine what 
filtering through cultures may mean. 

When actioned: 

o the resources from the current graph appear to be shaded, 

o when the next search is made the filter choices will be taken into account. 

2.4.3.2 The resource provider area 

The logo of the repository of the current base resource is shown. This image is 
clickable and allows to connect to the relevant OER repository. In LAM 1.0 just three 
sites are proposed. 

2.4.3.3 The resource information area 

A number of data is extracted from the OER metadata: 

o The title of the resource (in original language) 

o The author of the resource 

o The URL of the resource 

o The modality of the resource (the format of the file) 

o The length of the resource, measured in characters in the transcription 

o The license: this is an important information which is in fact difficult to find. It 
can sometimes be found in the metadata, sometimes it is standard for the 
entire repository, sometimes it refers to a well established Creative Commons 
license, sometimes to a local one. 

o The difficulty of the resource is not computed in LAM 1.0. 

o The quality of the resource is ongoing work of WP1. As such the results are 
yet to be consolidated in order to be added to LAM 2.0 

o The number of views which is not computed in LAM 1.0 

2.4.3.4 The graph area (resource in context) 

This area allows a simple visualization and navigation. The current resource is placed 
centrally and up to 10 close resources are placed around the current resource with 
the dimensions used to enhance the following two aspects: 

 The length of the resource. In order to have a homogeneous measure across 

the different formats, the length is measured as the number of characters in 
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the English transcription. The longer resources are represented at the bottom, 

the shorter ones at the top. 

 The technicity of the resource. Some OERs are accessible only to specialists. 

We compute an index reflecting this technicity and the more complex 

resources will be situated to the right of the area, the least technical ones to 

the left. 

Alternative uses of the dimensions were tested. But again, the goal of the graph is to 
help developers, not to allow learners to use the graph for their own experience. 

2.4.3.5 The search area 

A very simple search engine has been implemented which relies on some keywords 
in English. The search engine takes into account the filters. 

2.4.3.6 The related resources area 

In this version of the learning analytics engine only OER data is made use of. In the 
next version, user data can be used to propose user based close resources 
(collaborative filtering). 

 

Figure 3: Screen 2. The navigation tool for LAM 1.0 (bottom) 

2.4.3.7 The keywords area 

The top words from the transcription (or the translation to English) are given allowing 
to have a rapid precise positioning or the resource. TF-IDF scores are used here: a 
term is important in a document if it appears (often) in the document and doesn’t 
appear in the others. 

2.4.3.8 The Wikifier area 

The transcription is wikified using http://wikifier.org/. The transcription is used for this 
and allows important terms (not necessarily those from 2.4.3.3) to be linked with their 
Wikipedia definition. 

http://wikifier.org/
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2.4.3.9 The transcriptions area 

In the current version, all resources are video, so the choice is between providing an 
access to a viewer or proposing the transcription in the original language, in English 
or in the language of the used. In LAM 1.0 two transcriptions are given: in the original 
language and in English. 

1.1 FUTURE WORK 

o A multilingual search engine with a much richer combination of search terms 
and concepts should be provided 

o User oriented similar videos could be proposed in zone 8. This would be a 
preliminary step toward collaborative filtering. 

o Better management of length/difficulty attributes is going to be a primary task 
for year 2. In this version vocabulary is the main component: a resource is 
difficult because it uses rich and complex vocabulary. But notions, topics and 
themes will be much more significant. 

o The graph visualization can be improved: less nodes can be selected in order 
to allow more meaningful information. 

o As pointed out in the objectives (see Section 1.2) “The analysis should be fine 
grained: it is not about linking a video with a text, but linking a moment of 
video with a piece (a paragraph) in a text”. This requires navigating and 
indexing at a much finer level, and relying on more complex alignment 
techniques (Mougard et al. 2015). 

1.2 CODE AND LINKS  

The code corresponding to the Section 2 can be found here: 

 Section url 

Preprocessing 

tools 

2.2.1 https://gitlab.univ-nantes.fr/x5gon/oer-

content-analytics-tools 

The API 2.2 https://gitlab.univ-nantes.fr/x5gon/oer-

content-analytics-tools 

 

The dashboard 2.3 https://gitlab.univ-nantes.fr/x5gon/y1-lam-

dashboard 

Table 1: The different elements of code for section 2 

2. OTHER ANALYTICS 

In May 2018, the data available through the pilot sites was not sufficient nor 
representative of what user data would look like. We therefore used different albeit 
related data. 

Scientific events were recorded and hosted on the videolectures website 
(http://videolectures.net ). 

https://gitlab.univ-nantes.fr/x5gon/oer-content-analytics-tools
https://gitlab.univ-nantes.fr/x5gon/oer-content-analytics-tools
https://gitlab.univ-nantes.fr/x5gon/oer-content-analytics-tools
https://gitlab.univ-nantes.fr/x5gon/oer-content-analytics-tools
https://gitlab.univ-nantes.fr/x5gon/y1-lam-dashboard
https://gitlab.univ-nantes.fr/x5gon/y1-lam-dashboard
http://videolectures.net/
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This website is the source of the two kinds of data we had for the following study. 
These videos are all educational resources whose descriptions and details are 
contained in a database. The database comes from the logs of the website which 
were produced between 2013 and 2017. In this database, the context of the video as 
well as the users and their actions were recorded. The second data is a set of 
transcriptions, in several languages, of the videos. Coming from another group 
working for the X5GON, these automatic transcriptions contains the speech of the 
orator as well as the time in the video for each pronounced word. 

2.1 LINKING THE VIDEOS WITH THE LOGS  

From the videolectures dataset we have access both to the logs and to the 
transcription. So the following questions are relevant: 

If user X performed action A at instant I, do we have clues in the transcription to 
explain why? 

Action A can be something like “Restart”, “Skip” or “Leave”. Instant I is meaningful 

as transcriptions and logs can be aligned. 

And the clues we are looking for can be: 

o The quality of the transcription which can be related to the quality of the 

soundtrack. A common hypothesis is that a user will possibly stop the video if 

the quality is bad. 

o The speed of delivery. 

o The quantity of difficult words. 

o The fact that there is a slide change. 

These clues were based on work reported in the literature concerning difficulty (Si & 
Callan 2001) or redundancy (Xue & Hwa 2014, Thadani & McKeown 2008). Behind 
these question lies a more complex question: what is the intent of the user (see 
Appendix A1 for details). 

3.1.1. Method 

Going through the logs, we chose to use videos watched by a sufficient number of 
users, in order to have enough material to observe a general behaviour of the user 
toward a video. In our case, the logs are going back to 2014 and up to 2017. As the 
number of videos viewed over 100 times is around 500, we decided to use these and 
especially the ones with views by over 1000 users.  

These resources also contain information about the videos themselves and their 
transcriptions, and also about the users and the video they watch as well as the part 
of the video they watched. Some kind of actions performed by the users were also 
defined: play, break, skip forward, skip backward and log out. As the users don't 
usually watch the video in one session, we assumed that it would be meaningful to 
observe their time of interactions with the interface. 

Our first experiments were on the videos viewed over 1000 times. We produced 
some histograms about the actions of users to better understand their behaviour. On 
these histograms, we overlaid the factors to give us a first observation of the 
phenomenon. 



   
 

 
Copyright - This document has been produced under the EC Horizon2020 Grant Agreement H2020-ICT-2014 

/H2020-ICT-2016-2-761758. This document and its contents remain the property of the beneficiaries of the X5GON 
Consortium 

                                                   P a g e  18 / 34
    

 

 

Then, we tried to correlate the number of actions with these factors among all the 
videos with available data. We used the chi-squared test for these experiments. 

3.1.2. Experiments 

To have an idea of the behaviour of the users, we produced histograms for a few 
videos. Using the database, we counted the number of user going backward or 
forward in function of their previous viewing time. 

Through histograms, we observed the following actions in function of time: break, 

skip forward and skip backward. We made two observations:  

o the break event is almost never performed by the user. We mostly used the 

backward and forward events for the following reason: The first supposition 
we made was that a difficulty would lead to a backward or a break and a sign 
of simplicity would be a forward skip. Yet, some early observations revealed 
that the break event is almost never performed by the user. So, from then on, 

we used the backward and forward events. 

o For some intervals of time, the number of actions were extremely high in 
comparison to the rest of the video indicating the possible existence of a 
reason which leads all these users to perform a similar action at the same 
time. Following this line, we searched for some kind of factors which could 
influence the viewing of the video.  

To compare the different factors enumerated above in function of the time with the 
numbers of actions performed by a user, we divided into small intervals of time the 
video. More precisely, we parse the table of the actions ordered by time and at the 
same time through the xml tree of the transcriptions: for each interval of time we 
retrieve the number of actions and the data for the factor under scrutiny. This gives us 
the possibility to overlay this information on the graphics, as can be seen in the 
Figure 3. 

 

Figure 4: Histogram. Actions by users in relation with specific moments of a video. 
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After going through all the data and especially the transcriptions we have, some 
factors which could be relevant were defined: the redundancy of the speech, the 
speed of the orator, the difficulty of the words and/or contents, the quality of the audio 
recorded. 

In order to know what would affect the user during the viewing of the video, we tested 
these factors using the chi-squared test. For the chi-squared test, the number of 
actions of users as well as the number of users watching for the same interval was 
calculated. In function of the quality of the audio for each interval, the table of 1-
degree of liberty was constructed. We proceeded in the same way for the others 
factors. 

 

Figure 5: Histogram: More actions take place when there are slide changes 

Yet, we discovered that, for the most part, these factors didn't have a strong 
correlation with the actions of the users: in an experiment running over 1632 videos, it 
was found that this correlation was significant in 1031 cases. Bewildered, we 
searched some other factors and we were then able to grasp one which is specific to 
this website: the slides attached to the video. The peaks of actions seemed to 
corresponds to the time of start of each slide, as can be observed in Figure 4. As the 
time of slide change isn't recorded in the given data, we retrieved them by hand for 
some videos viewed over 1000 times. (Note that every lecture on this website doesn't 
necessarily have slides attached to the videos.) For the videos with slides attached, 
the slide change seemed to have a correlation with the videos. We used again the 
chi-squared test and, we verified that there is a correlation between the actions 
performed by the users and the slide change. So, for videos viewed by over 1000 
times, the slide change is the main factor of influence.  
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3.1.3. Discussion 

We chose to use the videos which are the most viewed, however it is possible to 
argue about the fact it doesn't mean they are sure to be representative of all the 
videos on the website, as we have no way to confirm or disconfirm. Another thing 
which we should be careful about is that, according to our hypothesis, we mainly 
focused on the events of skip forward and skip backward, yet there's also the events 
of logging out which could be as meaningful as the skips.   

3.1.4. Open questions and further work 

For this website, the system of slide appended to the videos is widely used by the 
users. The slide change is the factor of influence over the actions of the users. 
However, it is something to confirm for videos with lesser views. This factor is, for 
now, noteworthy only for videos with a decent number of views. So, as this slide 
system isn't used on a regular basis in other video websites, some factors 
enumerated above may hold some influence. These factors shouldn't be discarded 
and, if possible, tested with other sources.  

Another lead would be to inspect the slides where the users tend to watch the most 
and, for each interval of time between two slides, to look at the difficulty of the words 
in the slide and in the audio corresponding to the time a slide is used.  

3.2 FINDING THE MISSING VIDEO  

A long term goal of X5-GON is to be able to propose a series of resources rather than 
a single resource. For this a typical question may be: “a user has used the following 
OER, what is the next one we should propose?” In order to answer this question one 
requires to have identified a goal and to be able to evaluate resources in relation with 
this goal. 

In an early attempt to move toward answering this question we have worked on the 
following simpler question: “can we find the missing resource?” The system is given 3 
consecutive resources. The second one is removed and mixed with alternative 
candidates. Can we identify the “missing resource”? 

More precisely, consider a series of ordered resources R1…Rk. And another much 
larger set of resources X. 

We extract resources Ri and Ri+2 and constitute a candidate set containing the other 
resources from R1…Rk and X. Can an algorithm find the solution (Ri+1) to our problem: 
what resource should be proposed between Ri and Ri+2? 

Alternatively, the question may be posed as follows: what resource should be 
proposed to a user who has consumed Ri and would like to consume Ri+2? 

3.2.1. Method 

The tested algorithm works as follows: 

TF-IDF vectors are built for each resource (see Section 2.2.). 

The main TF-IDF values of the union of Ri and Ri+2 are extracted and the words these 
correspond to are constitute set S. We represent set S in Yellow in Figure 5. 
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Each candidate resource is now evaluated against set S: the score is just the number 
of terms present in the resource. 

The hypothesis behind this algorithm is that a bridge-resource is a resource that 
shares the top keywords of Ri and Ri+2. 

For example, an introduction course about programming in Python will possibly have 
the words string, list, element, tuple, object, assign, code, split, loop, iteration, 
dictionary, curly braces, etc. as top keywords. 

But an introduction to biology with have these top keywords: cell, membrane, protein, 
ribosome, mitochondrion, nucleus, biology, organism, cytoplasm, molecule... 

The top keywords of a document are determined with the TF-IDF score of each 
vector. 

Only the top (1/7, arbitrarily chosen) values were kept in order to just keep the most 
important words. 

. 

Figure 6: Computing the score. The cardinal of the starred zone is maximized. 

3.2.2. Experiments 

We evaluated the above method by building some corpora to serve as the ordered 
set: we first chose lectures from the MIT OpenCourseWare and the Open Yale 
Courses. These are typically lectures given during a semester. 

With this technique we obtained between 40% and 60% of correct guessing, 
depending on the corpora. 

We also tested a variation of this evaluation: instead of choosing one CR, we chose 
the 10 best. With this technique we obtained between 90% and 100% of success 
rate. 

Corpora C1 C2 C3 C4 

Best score 60 % 38,46 % 40 % 57,14 % 

10 best 90 % 100 % 95 % 100 % 

Table 2: Finding the intermediate resource 
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C1 : Introduction to Computer Science and Programming in Python: 

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-

introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-

videos/  

C2 : Introduction to Computational Thinking and Data Science: 

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002-

introduction-to-computational-thinking-and-data-science-fall-2016/lecture-videos/  

C3 : Foundations of Computational and Systems Biology: 

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-

biology-spring-2014/video-lectures/  

C4 : Freshman Organic Chemistry I: https://oyc.yale.edu/chemistry/chem-125a  

3.2.3. Discussion 

The tests did contemplate situations where various teachers were concerned: teacher 
A gave lectures R1 and R3 whereas teacher B gave lecture R2. And the results were 
similar, which would show that not only idiosyncrasies are being captured. In another 
experiment this was done over television programs (in this case Friends). The results 
were not as good, suggesting that for pedagogic reasons teachers will be careful 
about the vocabulary they are using. 

3.2.4. Open questions and further work 

The method described above is very simple and symmetrical. Other algorithms were 
tested but did not obtain the success rates reported here. Being symmetrical is 
particularly surprising: this means that if we ask “what is the missing resource to get 
from Ri+2 to Ri?” we will get the same answer as when asking “what is the missing 
resource to get from Ri to Ri+2?”. 

Making more extensive experiments is another issue. The preliminary ones reported 
here show that the technique is successful, and that when it fails, the result returned 
is often a resource which could fit quite well between the 2 resources. 

Obviously, the scenario we analyse here is still very simple in comparison to the final 
one. So moving toward such a scenario we can envisage to build a chain of 
resources: in this case we would be giving the algorithm Ri and Ri+j and require the 
intermediary resources. 

3.3 FOLLOWING USERS ACROSS ONE VIDEO  

How can we help a user to learn more efficiently?  

The first idea is that to help him, we need to know what he wants, in short his intent. 
In order to answer this question, we searched what could influence or help a user at 
first in the video and its contents, but there's also a different approach possible by 
following the progress of one user over a video. We tried to search if some kind of 
patterns of behaviour exist between all the users.  

Alternatively, we can take one video and consider all the logs related to it. Then the 
following questions make sense: 

If we consider the navigation path of a user on a resource, can we infer from this if 

the user is going to watch most of the video or only part of it? 

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/lecture-videos/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/lecture-videos/
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/video-lectures/
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/video-lectures/
https://oyc.yale.edu/chemistry/chem-125a
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3.3.1 Method 

To search some patterns of behaviour, we focused on each user and their 
progression. An alphabet was defined with six characters: {l, P, b, B, f, F}. Each one 
of these characters corresponds to an action performed by the users, respectively: a 

little play, a longer play, a little skip backward, a longer skip backward, a 

little skip forward, a longer skip forward. (An action of play was determined as 

“long” if longer than 10 seconds.) The same threshold is used for the others events. 

With this alphabet, it is possible to summarize the behaviour of a user on a video into 
a word. We were then able to create with the data a set of words. We retrieved a set 
of words which look like these words: {'PBP','lfPfP'}.  

Then, we tried to answer to the next questions: If I know the previous characters in 
the word, what's the most probable behaviour? If I know the previous characters, can 
I determine if the user watched assiduously the video? To answer, we divided the 
user into two groups: one who didn't watch the video for a long time, like at most only 
10 minutes for a 1 hour and a half long video, and some who did watch longer than 
that. With our example, it led to two groups with almost the same number of users. In 
order to spot some patterns specific to a group or another, the goal is to produce a 
probabilistic automaton. Using the two sets of words, we tried to build 2-testable 
automata, and also 3 and 4-testable (Garcia & Vidal 1990, de la Higuera 2010). To 
build them, we used the alphabet previously presented. Then we determined four 
sets of words or sub-strings: one with the words of length less than k, one with 
possible substrings of length k, one with the possible prefixes and another with the 
possible suffixes of the words, each of length k-1. Knowing the alphabet and the set 
of words, we build these sets and at the same time, counted the number of time each 
word/substrings appeared in words. With these, we were able to find the proportions 
of users going from a state to another. We chose to use the k-testable automata for 
modelling..  

 

 

Figure 7: A 2-testable automaton 
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3.3.2 Experiments 

We tested this approach on one of the video having the most views. Using this kind of 
automata on one video, we were able to notice some kind of specific behaviour 
coming from the user. We were able to spot some recurring patterns: {P, PBP, 
PBPBP, ...} In fact, for both groups, this pattern is the most probable. However, for 
some substrings who don't come as often as these, we are able to determine from 
which group of users they come from, or at least it's the most probable group they 
come from. For example, a user whose string is 'P' is sure to be part of the group who 
doesn't watch much.  However, every substring doesn't let us determine which group 
one is belonging to. Which is why we used the 3 and 4 testable to determine which 
group will produce some more complex sequence of characters. With this way of 
doing thing, we were able to determine, for example, that the substring 'PBP' is 
generally produced by users from the group which watch a short time the video. 

3.3.3. Discussion 

We defined for a simple approach an alphabet of six letters and choosing arbitrarily 
the threshold between a little and long play. We chose 10 seconds, however it may 
be arguable and, it would be possible to reiterate the experiment with another 
threshold. Another arguable fact is that it was mainly tested on a video. Some other 
tests may be needed with other video with different characteristics. 

3.3.4. Open questions and further work 

According to the characteristics of the video, it might be possible to determine some 
pattern of behaviour for users. Further efforts are needed in order to be able to help 
detect patterns as early as possible. 

2.4 CODE AND LINKS 

 Section url 

Linking the videos 

with the logs 

3.1 https://gitlab.univ-nantes.fr/x5gon/oer-

useractivities-analytics-tools 

Finding the 

missing resource 

3.2 https://gitlab.univ-

nantes.fr/x5gon/intermediateresources 

Following the user 3.3 https://gitlab.univ-

nantes.fr/x5gon/followingusers   

Table 3: The different elements of code for Section 3 

3. OTHER ISSUES 

3.1 THE SNIPPET  

The success of X5-GON’s approach means that in a nearby future new repositories 
are going to be added all the time. But there is no standard way of organising these 
repositories. Yet X5-GON should aim at providing solutions which are simple to 
install: the political decision of (really) opening the resources is complex enough for 
an institution! 

https://gitlab.univ-nantes.fr/x5gon/oer-useractivities-analytics-tools
https://gitlab.univ-nantes.fr/x5gon/oer-useractivities-analytics-tools
https://gitlab.univ-nantes.fr/x5gon/intermediateresources
https://gitlab.univ-nantes.fr/x5gon/intermediateresources
https://gitlab.univ-nantes.fr/x5gon/followingusers
https://gitlab.univ-nantes.fr/x5gon/followingusers
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One popular way of organizing the resources is through a Learning Management 
System (LMS). Even if there are several alternatives, Moodle is possibly the most 
popular option. So the question is: what can we provide a repository managed 
through Moodle in order to let X5-GON index the resources and monitor their usage? 

4.1.1 The issue 

The technical problem needing to be solved is to notify the X5GON server each time 
a resource has been accessed by some user. To do that, we integrated the snippet 
solution on Nantes University LMS which is a Moodle LMS. The main problem is that 
Moodle systems can englobe resources (with the added problem that the definition of 
what a resource is still needs to be consolidated) in many different ways: courses can 
embed one or several resources and one course can be composed of one web page 
or many web pages. And since     

o the first version of the snippet can only handle One Resource-in-One Web 
Page resources, 

o the first version of snippet cannot identify which exact resource is accessed in 
the case of courses pages in Moodle systems which can contain multi 
resources, 

o the meta-data of resources in Moodle are not explicitly present in the courses 
web pages (either are not totally exposed like the license information or are 
identified by Moodle local identifiers). 

we complemented the snippet with another piece of software which is the X5GON 
Moodle API. 

4.1.2 An API for MOODLE 

The chosen solution consists of 

1- Integrating the snippet in the Moodle Courses pages. That will result the 

notification of X5GON server each time a user accessed that course page. 

2- After being notified to do so, the X5GON Crawler will fetch the same course 

page and gather all OER resources and related information, communicating with 

the X5GON Moodle API to identify which are exactly the OERs and what are the 

relevant metadata (license, author, ...). 

So the X5GON Moodle API is an External web service Moodle plugin accessible from 
outside Moodle by one of the most secured and preferable web service protocols for 
Moodle which are XML-RPC, REST or SOAP. In this version, the crawler will need to 
use XML-RPC to access the functionalities of this API (but this choice may be 
modified in the future).  

In addition, the API is designed in a flexible way so as to fit X5GON’s needs and to  
be reusable in another context with another LMS Moodle installation.  For this 
version, there is some Nantes University specificity related mainly to how 
courses/repositories are organized...  

Concerning the features of this API, it can be accessed when requesting one of the 
following services: 
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o courseinfos: This service gives the possibility of knowing all information 

about a specific course (category, description, author ….) and its related 

resources. 

o courseoers: This service will return only the OER resources of a specific 

course and their related information (all needed meta-data about those OER 

resources). 

o resourceinfos: This service will return all required information about specific 

Resource fetched and found in a course page. 

o oerlist: This service will return a list of all OER resources stored in Moodle 

and their related meta-data. 

To do that, we referred to many resources mainly from Moodle Documentation such 
as: 

- https://docs.moodle.org/dev/External_services_description 

- https://docs.moodle.org/dev/Web_services_API 

- https://docs.moodle.org/dev/File:Course_modules_database.png 

- https://docs.moodle.org/dev/Web_services 

- https://docs.moodle.org/35/en/Using_web_services 

- https://github.com/moodlehq/moodle-local_wstemplate 

3.2 INTENT 

Intent is a key concern for X5-GON. Capturing in one way or another the intent of the 
user is what is going to allow to provide meaning full personalized recommendations.  

One approach is to attempt to get hold of information from the user himself. 
Questions can be asked, a profile can be searched; If the student belongs to an 
organization the motivations and intent of similar students can be discovered. 

Alternatively, intent may lie in the resources themselves. 

Global intent is what characterizes the reason for which the learner is here. Local or 
immediate intent captures what the learner wants now. We have in both cases two 
sources of information: content (what is in the course) and action (what the user is 
doing). There is a paradox: for local intent we should study the content to understand 
the actions. For global intent it is probably going to be the other way round: study the 
actions to understand the content. A preliminary analysis of these questions can be 
found in Appendix A1 and some experiments are presented in Section 3.1. 

3.3 VALIDATION 

Evaluation is an important topic. If on the medium term AB testing will be required 
(Joachims 2015), we need to validate the techniques and choices made at this point. 

In Year 1 we have spent time comparing the different vector representations used to 
manipulate the OERs and, importantly, to compare them. 

Projecting text data into vector spaces raised the question of which vector 
representation to adopt and how to measure the quality of the representations. 

https://docs.moodle.org/dev/External_services_description
https://docs.moodle.org/dev/Web_services_API
https://docs.moodle.org/dev/File:Course_modules_database.png
https://docs.moodle.org/dev/Web_services
https://docs.moodle.org/35/en/Using_web_services
https://github.com/moodlehq/moodle-local_wstemplate
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The resource annotations provided by http://videolectures.net was the closest 
approximation of a golden truth. These annotations were used to evaluate the quality 
of the generated vectors. 

The annotations provided by http://videolectures.net consist of sets of labels which 
correspond to scientific fields with varying levels of specificity. The main idea behind 
the evaluation is to compare the distances between labellings and vector 
representations. 

3.3.1 Inter-category Distance Measure 

Computing a distance between two categories (say "Physics" and "Mathematics") is 
not intuitive. To proceed, several methods were experimented. A first naive method 
consists in assuming that the distance between one category and itself is null while 
the distance between this one category and all the others is maximum (or equal to 1). 
A second set of methods consists in determining the distances with respect to the 
graph of the categories provided by http://videolectures.net. To do so, each edge was 
weighted according to the following methods: 

Each edge has a weight of 1. 

Each edge has a weight of nn-k+1 , where n is the depth of the graph and k is the 
number of edges from the root. Notice that the graph from videolectures.net is a 
directed acyclic graph with a root. 

 

Example of graph distances 
(method 2) 

In this example, the second method 
is applied. Thus, the distance 
between "Support Vector Machines" 
and "Ethics" is determined by the 
sum of the edges in the shortest path 
between the two nodes, that is:  

74+75+76+77+77+76=1901592. 

The distances are then normalized 
between 0 and 1 by dividing them by 
the maximum distance in the graph. 
The distance between "Support 
Vector Machines" and "Ethics" is then 

1901592 / 1918742  0.991. 

 

3.3.2 Inter-labelling Distance Measure 

The labelling of a document is the set of all its categories. The distance between two 
labellings is computed with the following formula: 

http://videolectures.net/
http://videolectures.net/
http://videolectures.net/
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With A and B, two labellings and dcat the distance between two categories. 

If two labellings share the same categories then the distance is null. Inversely, if two 
labels are as distant as possible the distance would be equal to 1. 

3.3.3 Comparing Label and Vector Distances 

To evaluate the quality of the vector representations, we compare the distances 
between labels and vectors. To do so, three documents are drawn randomly, which 
we name A, B and C. We then have two triangles - one representing the label 
distances (ABC) and the other the vector distances (A’B’C’). 

 

The evaluation is based on the 
number of errors between the 
comparisons. A comparison is 
comparing the relation between two 
sides on the two triangles. For 
instance, we can compare the 
relation between AB and AC with A’B’ 

and A’C’. If the relations are not the same (inferior or superior) we count an error (and 
no error otherwise). If the relations are both equal, we count half an error as there is 
no way to actually compare the two measures. 

 Label Vector Result 

-  < < Correct 

-  < > Error 

-  = > Error 

Comparisons are discarded when label distances are null (meaning that both 
documents share the same labels). 

3.3.4 Determining the Error Rate 

The error rate is determined by dividing the sum of the total amount of errors by the 
number of effective comparisons. Since a triangle has three edges, three 
comparisons are carried out. 

 

 

are presented in Section 3.1. 
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3.3.5 Preliminary results 

The results were inconclusive. The average error rate for BOW was of 40%. A careful 
analysis of the results showed that the labels used were very loosely defined. Using 
word embeddings the results were better but still not satisfying. 

4.4 CODE AND LINKS 
For security reasons the code for the Moodle API and the Snippet integration cannot 
be distributed openly in its present version. 
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APPENDIX  
 

A1: SOME NOTES CONCERNING INTENT 

A1.1. The learning situation and the 2 notions of intent 

We are supposing an on-line learning situation where the learner is sitting reading 
some notes, watching a video, listening a file. In all these case there is a transcript of 
the text available. The learner can, at any moment, interrupt the session by pressing 
a buzzer / something else button. 

From previous experience, we know that the recommendation to be made doesn't just 
depend on the learner's profile or the distance between the resource he is viewing 
and other resources available. It also depends on understanding (as well as possible) 
what he wants. 

In the case of a learning session which can be long, we should make a difference 
between what the learner wanted when he started the session and what he wants 
when he presses the buzzer. In the first case we talk about the global intent. In the 
second case about the local intent. 

A1.2. Defining intent  

This section is from (Davies 2003): 

Intent is a relatively common term that appears to be readily understood by most 
people (Zimmerman, 1984). Nevertheless, despite its familiarity, our ability to 
characterize the true essence of one’s intentions has proven difficult and the question 
of how best to define intent has been the focus of much debate and disagreement 
among scholars (Pervin, 1983); most learning theories simply ignore the concept of 
learner intent altogether (Snow, Corno, & Jackson, 1996). 

In this research, learner intent is understood as a conative construct, the result of a 
volitional decision making process. Constructs like intent are not considered to be 
behaviors; rather they are aspects of human nature (Snow, Corno, & Jackson, 1996). 
Learner intent is an internal representation of a person’s beliefs, values, aims, as well 
as the reason and purpose for participating in the learning activity. One’s intentions 
are formed naturally in the mind and are assumed to capture all the motivational 
factors that may have an impact on a behavior; nevertheless intent is separate from 
both motivation and action even though learner intent often determines how hard a 
person is willing to try in order to learn (Ajzen, 1988; Bandura, 2001; Heckhausen & 
Kuhl, 1985).  

A1.3. LaVie  

In 2011 project LaVie was run as part of the PASCAL network. The goal of LaVie was 
to add a recommendation system to the VideoLectures website. 

In fact, Videolectures already had a simple recommendation system which was 
heavily biased toward recommending the more popular videos. 
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A team grouping researchers from Ljubljana, Nantes and Valencia met during a 
week, defined the architecture of the new system. The system was then implemented 
and installed. AB testing took place. The main finding was that the new system was 
worse than the baseline. 

Only an informal debriefing was done of this disappointing result, but the following 
points appeared: 

The quality of the recommendations was very good: a closer analysis of the videos 
recommended showed that the videos were much closer related to the video being 
watched. 

Recommendations were made on the fly, when creating the webpage including the 
video to be watched. In other words, the videos recommendations were decided once 
for all at the launch of the page. Yet one may wonder if after having watched a one 
hour scientific lecture on a difficult topic we want to see another similar video? 
(Unfortunately it was not checked if the recommendations were followed better in the 
early moments of the video). 

At no point was the intent of the user taken into account. 

A1.4. Different types of intent  

A1.4.1. Global intent 

The Global intent can be captured by cues concerning the learner's previous 
activities, and perhaps his own declarations when joining the platform. Globally 
speaking it is a complex question. We also have to admit that we will probably, in 
many cases, know very little about it (a learner following a link someone shared with 
him). 

Global intent has been studied for some time, for example by Davies (2003). He 
makes a difference between Habitual Intent and Situational Intent. The first is that 
general attitude towards learning. The second is one the learner will take in unusual 
situations. 

A1.4.2. Local intent 

We will talk about local intent to consider the situation where the learner is on a 
platform, supposedly immersed in an activity and presses on the Something else 
button. 

We only know that he wants to be rescued and requires some feedback. 

The first idea is to initiate a dialogue and in a few questions understand what his 
problem is in order to address it. 

But there is room for a second idea: through the activity he was involved in and 
perhaps some knowledge about his global intent, can the system detect (with high 
probability) why he has pressed the button? 

A1.5. Some examples 

Here are some possibilities. 
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A1.5.1. Yes, I know... 

Some courseware can be very repetitive, redundant. This is actually an asset of on-
line learning: whereas in a classroom the teacher can't go through 5 examples of 2*2 
matrix multiplications, Andrew Ng does exactly that in one of his videos. The idea is 
that a student who understands fast can skip (typically to a quiz) whereas another 
student might need all 5 examples to get the idea. So if we can have a redundancy 
score attached to a fragment of a resource and the student has hit the button just in 
such a zone, a good suggestion may be do you want a quiz to check that you got it? 

Redundancy issues have been addressed in Natural Language Processing. One 
important example is that of automatically building abstracts of texts. 

In (Thadani &McKeown 2009) the idea is to consider a text as a set of snippets (units) 
and build a graph containing edges relating contiguous snippets and related snippets. 
This graph is then used to build shortest paths which are then supposed to contain 
the same information as the alternative paths subsumed. The method may be difficult 
to use in an on-line setting but is certainly a good starting point. 

A1.5.2. Supercalifragilisticexpialidocious 

Suppose a strange word has been used in the courseware just before the buzz. Then 
it may be right to consider that the reason the learner buzzed is to find out more 
about this word. A definition may be needed or a rephrasing, or an alternative 
resource; In this case, we may send the learner here: 
HTTP://WWW.YOUTUBE.COM/WATCH?V=1PU1ADXQUAG  

A1.5.3. Are you talking to me? 

Take learning material for coding. It could be addressed to children or to adults. The 
way a teacher speaks (or writes) is adapted to the audience. Independently of the 
difficulty of the material itself, the learner could be taken back by the way the teacher 
is expressing things. 

Question: can we detect the age group from the transcription of a lecture? 

Hypothesis: yes. 

A1.5.4. I can't understand/ It's too easy 
From the title of the resource it seemed adapted to the learner's need. But when 
facing the material the learner understands he does not have the right background 
knowledge to follow. Would there be an alternative resource with the same question 
addressed with perhaps less prerequisites. 

http://www.youtube.com/watch?v=1Pu1adxqUAg
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