

Copyright - This document has been produced under the EC Horizon2020 Grant Agreement H2020-ICT-2014

/H2020-ICT-2016-2-761758. This document and its contents remain the property of the beneficiaries of the X5GON
Consortium

 P a g e 1 / 17

X Modal
X Cultural
X Lingual
X Domain
X Site
Global OER Network

Grant Agreement Number: 761758
Project Acronym: X5GON
Project title: X5gon: Cross Modal, Cross Cultural, Cross Lingual, Cross Domain, and
Cross Site Global OER Network
Project Date: 2017-09-01 to 2020-08-31
Project Duration: 36 months
Document Title: D4.3 – Early prototype of recommendation engine
Author(s): Jasna Urbančič, Erik Novak
Contributing partners: JSI
Date:
Approved by:
Type: P
Status: Draft/Final
Contact:

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission
Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission
Services)

 P a g e 2 / 17

Revision

Date Lead Author(s) Comments

20.07.2018 Jasna Urbančič Initial draft

23.07.2018 Erik Novak Internal revision

13.08.2018 Colin de la Higuera First review and feedback

 P a g e 3 / 17

TABLE OF CONTENTS
Table of Contents ... 3

List of Figures .. 4

Abstract ... 5

1 Introduction ... 6

2 OER material and user activity data ... 7

2.1 OER material data .. 7

2.2 User activity data .. 9

3 Recommender engine .. 10

3.1 Recommender systems overview .. 10

3.2 Recommender engine prototype ... 10

3.3 Recommender systems results ... 11

4 Future work ... 14

5 Conclusion .. 15

References .. 16

 P a g e 4 / 17

LIST OF FIGURES
Figure 1 Number of materials per repository in logarithm scale 8
Figure 2 Number of materials per language in logarithm scale 8
Figure 3 Number of items per file type in logarithm scale ... 9
Figure 4 High-level scheme of recommender engine ... 11
Figure 5 URL-based recommendations for video “Is deep learning the new 42?” 12
Figure 6 Text-based recommendations for text “deep learning”. 12
Figure 7 Cross-lingual, cross-modal, and cross-site recommendations. 13

Acronyms Definitions

OER Open Educational Resources

API Application Programming Interface

REST Representational State Transfer

JSON JavaScript Object Notation

URL Uniform Resource Locator

HTML Hypertext Markup Language

file:///C:/Users/erik/Downloads/D4.3%20Early%20Prototype%20of%20Recommendation%20Engine.docx%23_Toc520380912
file:///C:/Users/erik/Downloads/D4.3%20Early%20Prototype%20of%20Recommendation%20Engine.docx%23_Toc520380913

 P a g e 5 / 17

ABSTRACT
The X5GON project is developing a recommender engine to recommend material from
multiple OER repositories, allowing the users to gain relevant knowledge from multiple
resources. The system will incorporate cross-site, cross-modal and cross-lingual
methods and services which will allow us to recommend materials provided in different
languages, file formats, and from different sites. In this report we present the initial
steps to achieving this goal – the prototype of a recommendation engine.

First we describe the data that was acquired through the X5GON platform. We present
the OER repositories from which we acquired the data, as well as basic statistics of
the acquired dataset concerning for example the types and languages of the
documents.

Next we present the recommendation models we are considering to develop in the
project. The models are based on content comparison and user preferences.

Finally, we present the architecture of the recommendation engine prototype and show
the initial results. We also present a way to embed the recommendation engine results
on a third party OER portal.

The cascade model followed by X5GON means that the first version of the
recommendation engine does not depend on work done in parallel in other work
packages: this work will be included in the future versions.

 P a g e 6 / 17

1 INTRODUCTION
The main objectives of this project is to create a cross-modal, cross-cultural, cross-
lingual, cross-domain, and cross-site global OER network by connecting several OER
repositories. To achieve this, we started to develop a recommendation engine which
inputs OER material and user activity data and outputs a list of materials that are similar
to the content the user is currently viewing and matches the user’s interests.

At the time of this writing we had acquired more than 80k items of OER material from
four different repositories. We used this data to develop a content-based
recommendation engine prototype which generates suggestions based on the material
the users are accessing.

In this report we present the early prototype of recommender engine. The report
includes a detailed description of the data acquired and to develop the recommender
engine, a brief overview of recommender systems, and a technical description of our
engine with examples.

The document is structured as follows. Section 2 focuses on the data used to generate
recommendations. The data consists of both OER material information and user
activity data, however at this stage we only use features from OER material. Next, in
Section 3 we describe a few approaches to recommender systems and describe the
engine. We also show how our engine works. Finally, we present the future steps of
the recommendation engine development in Section 4 and conclude the report in
Section 5.

 P a g e 7 / 17

2 OER MATERIAL AND USER ACTIVITY DATA
Before we started developing the recommendation engine we needed to understand
the data that is and will be available to us. This chapter is in some parts taken from
deliverable D4.1 – Initial prototype of user modelling, however it is relevant for the
development of the recommender system.

We identified there are two types of data which will be useful in the development
process: OER material data and user activity data. In this section we give a brief
description of both types of data and how it will be used in user modelling. The data
acquisition process of both types is described in D2.1 – Requirements & Architecture
Report.

2.1 OER MATERIAL DATA
The OER material dataset contains information about the material available in OER
repositories. It is presented in a JSON format containing the following attributes:

 title: the title of the material

 provider: the OER provider of the material

 materialURL: the URL to the material

 author: who created the material (optional)

 created: when was the material created or published (optional)

 type: what is material type, i.e. video, audio, presentation, image, text, etc.

 language: the language in which it is written, i.e. en, sl, es, etc.

 metadata: additional metadata acquired from the material, i.e. Wikipedia

concepts, extracted features, etc.

 license: the license under which the material is shared.

The attributes labelled as optional are not necessarily present.

In the time of this writing we had OER material from 6 repositories at our disposal, out
of which material from 4 repositories were pre-processed and used for the
development of the recommendation engine. These repositories are:

 MIT OpenCourseWare [1]

 AMS Campus - University of Bologna [2]

 Madoc - Université de Nantes [3]

 VideoLectures.NET [4]

The remaining two OER repositories will be pre-processed in the following months.
The unprocessed repositories are:

 PoliMedia – Universitat Politècnica de València [5]

 virtUOS – Unversität Osnabrück [6]

These repositories have been processed in WP3 and the result is presented in D3.1 –
Learning Analytics Engine 1.0.

The processed repositories together store over 80k items of OER material. Number of
materials per repository are shown in Figure 1.

 P a g e 8 / 17

Figure 1 Number of materials per repository in logarithm scale. Most materials come from MIT

OpenCouseWare followed by Videolectures.NET.

Some of the repositories offer material in different languages. All repositories together
cover 103 languages, however for only 8 languages the count of available material is
larger than 100. The distribution of items over languages is pictured in Figure 2. We
only show languages with more than 100 items available. The “Unknown” column
shows that for about 6k materials we were not able to extract the language. To acquire
this information, we will improve the language extraction method in our pre-processing
pipeline.

Figure 2 Number of materials per language in logarithm scale. Most of the material is in English,

followed by Italian and Slovenian. Materials from which we were not able to extract language will be pre-
processed again with an improved extraction method.

Repositories contain different types of material – videos, audio, and text. This results
in different file types of material, meaning that the pre-processing pipeline has to
handle several different file types. We visualized the distribution of materials over file
types in Figure 3Error! Reference source not found., however we only show types

with more than 100 items available. As seen from the figure the dominant file type is
text (pdf, pptx and docx) followed by video (mp4). The msi file type is an installer
package file format used by Windows but it can also be a textual document or a
presentation. If we generalize the file type distribution over all OER repositories we can
conclude that the dominant file type is text – which we take into account when
developing the pre-processing pipeline and recommendation engine.

1

10

100

1000

10000

100000

MIT OpenCourseWare VideoLectures.NET AMS Campus
University of Bologna

Madoc Université de
Nantes

C
o

u
n

t

Repository

Count of material by repository

1

10

100

1000

10000

100000

C
o

u
n

t

Language

Count of material by language

 P a g e 9 / 17

Figure 3 Number of items per file type in logarithm scale. The dominant file type is text (pdf, pptx and

docx), followed by video (mp4).

Metadata is at this point the most important attribute for building the recommendation
models. Metadata includes a series of values extracted from the material. One of the
values is Wikipedia concepts. These represent a semantic space, i.e. vocabulary, in
which we can compare materials. Additionally, Wikipedia concepts can be viewed as
topics or interests the material covers.

Metadata is extracted from the material in the pre-processing pipeline which is
described in D2.1 – Requirements & Architecture Report. What follows is an in-depth
description of the Wikipedia concept extraction.

Due to different types of OER material we needed to include components to extract
raw text from all of the provided types. We use Translectures [7] to obtain transcriptions
of audio and video materials, which are then used to extract the raw text, describing
its content. For textual materials we strip down the acquired document using a node.js
library named textract [8]. The library inputs the document and returns the raw text of
its content.

To extract the Wikipedia concepts we use Wikifier [9]. For each material we split the
raw text into chunks of at most 10k characters and pass them into Wikifier which
returns Wikipedia concepts found for the given chunk. These results are aggregated
and stored in the materials metadata attribute.

In the future we plan to add level of difficulty to the metadata attribute. Level of difficulty,
such as primary school, secondary school, or higher education, can be used in

providing recommendations that match the users level of understanding of a certain
topic. We also intend to include the findings of WP1 (Learning Rich Content
Representations) and WP3 (Learning Analytics Engine) in the metadata attribute for
use in the recommendation engine.

2.2 USER ACTIVITY DATA
Apart from the OER material we also acquire user activity data that describes who are
the users viewing and with which technology he or she does this. We have currently
acquired about 2.8M user activity records from Videolectures.NET and PoliMedia. This
data will be used in the next iteration of the recommendation engine. More information
about the acquired user activity data is found in D4.1 – Initial Prototype of User
Modelling Architecture.

1

10

100

1000

10000

100000

PDF MP4 PPTX DOCX MSI Other

C
o

u
n

t

File type

Count of material per type

 P a g e 10 / 17

3 RECOMMENDER ENGINE

3.1 RECOMMENDER SYSTEMS OVERVIEW
Recommendation engine is a subclass of information filtering system that seeks to
predict the preference a user would give to an item [10]. There are different ways of
creating recommendations. The recommendation approaches we are considering are
described in deliverable D4.1 – Initial Prototype of User Modelling Architecture. What
follows are brief descriptions of the considered recommendation approaches.

Content based recommendation. This approach is used when user expect to get
recommendations of OER material that are similar by content to the material he or she
is currently viewing. This approach does not need user information since it uses
material attributes such as Wikipedia concepts found under the metadata attribute.
The initial prototype follows this approach and is described in the Section 3.2.

Interest based recommendation. Another approach of recommending materials is to
use user’s interests. As described in deliverable D4.1 we present the users interests
with a set of Wikipedia concepts that were extracted from the OER materials viewed
by the user and build a user model. The user model contains topics the user is
interested and is used in a similar approach as content based recommendation.

Recommendation based on collaborative filtering. Collaborative filtering is a
method of making automatic predictions about the interests of a user by collecting
preferences or taste information from many users [11]. Here, we will expand the
recommendation engine to provide the user materials which were viewed by other
users with a similar preference or taste. The material will be sorted based on the
number of views it got from the set of users with similar taste.

3.2 RECOMMENDER ENGINE PROTOTYPE
For the initial prototype of the recommender engine we opted for content based
recommendation as such recommender systems do not suffer from the cold start
problem. In this section we present how the recommender engine works and how it
uses the OER material data. The material data is described in Section 1.2.1.

The basic idea of X5GON recommender engine is to provide a REST API to partner
repository owners that generates cross-site, cross-modal, cross-lingual, cross-domain
and cross-cultural recommendations based on the material the user is accessing on
the site of that partner repository. This means that it is the OER repositories’
responsibility to make API calls requesting the recommendations. The resulting
recommendations are either a JSON list of recommended materials data or an
automatically generated HTML with links that is ready to be embedded into OER
repository site. High-level scheme is pictured in Figure 4.

The data that we need to compute the recommendations includes:

 url: the URL of the material the user is accessing,

 text: any surrounding text (search query, title of the material, abstract or

description of the material, etc.), and

 type: [empty, cosine] – metrics used to compare Wikipedia concepts

o empty - number of common Wikipedia concepts,
o cosine – use similarity measure between materials raw text and the

content of found Wikipedia concepts.

 P a g e 11 / 17

Figure 4 High-level scheme of recommender engine. The recommended materials can be acquired by
either providing the material URL (2a) or by raw text (2b).

There are two separate recommender models in our recommender engine. One uses
material URL to generate recommendations, whereas the other one relies on raw
textual input.

URL- and text-based recommender models both use k-nearest neighbour algorithm
[12] to compute the recommendations. URL-based recommender system searches for
k most similar materials to the material with given URL based on the Wikipedia
concepts. On the contrary text-based recommender engine we search for the materials
with the most similar raw text to the query text using BOW model. Source code of the
prototype can be found at [13]. The prototype considers k to be equal 100, i.e. the
engine recommends 100 most similar materials based on the input.

URL-based recommendations have higher priority than text-based, meaning that if
both URL and text are present in the request the engine first tries to provide the URL-
based recommendations. To provide recommendations the engine must first map the
provided URL to the appropriate OER material. The inability to map URL to the material
in the database means that the item with the given URL is not in the database yet. This
mostly happens because the material is new and has not been acquired, pre-
processed and added to the database. We plan to develop a mechanism to add such
material automatically when we get a request like this from a known provider.

When the URL is not provided or the engine is unable to map the URL to the material,
the engine tries to provide text-based recommendations. Additionally, text-based
recommendations can be used to provide suggestions from the search query from the
entry site of the repository.

3.3 RECOMMENDER SYSTEMS RESULTS
As mentioned in the previous section the material recommendations can be provided
in two formats. The first is by means of an automatically generated HTML with links to
the recommended material. This HTML can be embedded into the OER repository
using the iframe tag. What follows are examples of such generated HTML for both
URL- and text-based recommendations.

 P a g e 12 / 17

Figure 5 shows recommendations in a form of HTML list with links for
VideoLectures.NET video with title “Is deep learning the new 42?” [14]. For this

demonstration we executed the following GET request in the browser:
https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2
016_broder_deep_learning/&type=cosine.

The results were generated by comparing Wikipedia concepts found in the materials.
Additionally, the parameter type determines the metrics used when comparing
materials using Wikipedia concepts.

Similarly, Figure 6 shows recommendations for text “deep learning”. To get these
recommendations we executed the following GET request from browser:
https://platform.x5gon.org/embed/recommendations?text=deep%20learning. Here,
the results are generated using the BOW model. The model compares the raw text
extracted from the materials with the provided text value in the query. As we have seen
in section 2.1, OER materials are provided in multiple languages. Because of this we
use text-based recommendations as a second option – if the URL-based approach
would not yield results.

Because we are using Wikipedia concepts as a semantic space representation, we are
able to compare materials written in different languages. This enables us to provide
cross-lingual recommendations which is one of the objectives of this work package.
Additionally, because we acquire materials from different repositories and are of
different types we can generate cross-site and cross-modal recommendations.

Figure 5 URL-based recommendations for video

“Is deep learning the new 42?”

Figure 6 Text-based recommendations for text
“deep learning”.

https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2016_broder_deep_learning/&type=cosine
https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2016_broder_deep_learning/&type=cosine
https://platform.x5gon.org/embed/recommendations?text=deep%20learning

 P a g e 13 / 17

These features are already shown in the provided recommendations as shown in
Figure 7. Blue frames mark cross-site and cross-modal suggestions, whereas red
frame emphasizes cross-lingual case.

Figure 7 Cross-lingual, cross-modal, and cross-site recommendations.

The recommendation list was generated by executing the following GET request in the
browser:https://platform.x5gon.org/embed/recommendations?url=http://videolectures.
net/kdd2016_broder_deep_learning/. The selected items appear towards the bottom
of the list.

To evaluate the recommendations we would need to get feedback from its users. To
this end, we had a conversation with the Ministry of Education of Slovenia who will run
one of the pilots with teachers and educators. TODO

https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2016_broder_deep_learning/
https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2016_broder_deep_learning/

 P a g e 14 / 17

4 FUTURE WORK
We have implemented content based recommendation method described in Section
3.2Recommender engine prototype. We set up a service on the cloud infrastructure
provided by Pošta Slovenije and tested the method. This prototype uses four OER
repositories as data sources. Other methods require user activity data which is
provided by the X5GON user activity tracker library. We are currently in the process of
collecting user activity data and expect to start developing recommendation methods
from Section 3.1.

Recommendation engine currently uses content-based recommender models. The
most important steps for the future include:

 adding more OER material from different sources,

 switching from purely content-based recommendations to approaches that
require user activity data, such as collaborative filtering,

 including findings from WP1 and WP3, and

 testing and evaluating the recommendation engine.

 P a g e 15 / 17

5 CONCLUSION
In this report we described the early prototype of the recommendation engine.

First we made a quick overview of the data we use in the architecture. In section 2 we
described the OER material data and user activity data that are used in recommender
engine. The OER material data is the product of the material pre-processing pipeline
within the X5GON platform described in D2.1 - Architecture and requirements report,
whereas the user activity data is provided by the X5GON user activity tracker.

In Section 3 we presented the recommendation engine prototype. Firstly, we did a brief
overview of common approaches to automatic generation of recommendations.
Secondly, we described the current state of our recommendation engine prototype.
We showed a high-level scheme and discussed two different types of recommendation
models that we covered. We demonstrated how to use the engine and what results are
expected with several requests.

Finally, we presented future work in Section 4 which includes adding more data, and
implementing, testing, and evaluating different approaches.

 P a g e 16 / 17

REFERENCES

[1] “MIT OpenCourseWare | Free Online Course Materials,” Massachusetts Institute
of Technology, [Online]. Available: https://ocw.mit.edu/index.htm. [Accessed 23
07 2018].

[2] “Benvenuto su AMS Campus - AlmaDL - Università di Bologna - AMS Campus -
AlmaDL - Università di Bologna,” ALMA MATER STUDIORUM - Università di
Bologna, [Online]. Available: https://campus.unibo.it/. [Accessed 23 07 2018].

[3] “Plate-forme d'Enseignement de I'Université de Nantes,” Université de Nantes,
[Online]. Available: http://madoc.univ-nantes.fr/. [Accessed 23 07 2018].

[4] “Videolectures.NET - Videolectures.NET,” Videolectures.Net, [Online]. Available:
http://videolectures.net/. [Accessed 23 07 2018].

[5] “media UPV,” Universitat Politècnica de València, [Online]. Available:
https://media.upv.es/#/portal. [Accessed 23 07 2018].

[6] “Universität Osnabrück - Start,” Universität Osnabrück, [Online]. Available:
https://www.virtuos.uni-osnabrueck.de/. [Accessed 23 07 2018].

[7] “transLectures | transcription and translation of video lectures,” translectures,
[Online]. Available: http://www.translectures.eu/. [Accessed 23 07 2018].

[8] “dbashford/textract: node.js module for extracting text from html, pdf, doc, docx,
xls, xlsx, csv, pptx, png, jpg, gif, rtf and more!,” [Online]. Available:
https://github.com/dbashford/textract. [Accessed 23 07 2018].

[9] J. Brank, G. Leban and M. Grobelnik, “Annotating Documents with Relevant
Wikipedia Concepts,” in Proceedings of the Slovenian Conference on Data
Mining and Data Warehouses (SiKDD 2017), Ljubljana, Slovenia, 9 October
2017.

[10] “Recommender system - Wikipedia,” Wikimedia Foundation, Inc., [Online].
Available: https://en.wikipedia.org/wiki/Recommender_system. [Accessed 23 07
2018].

[11] “Collaborative filtering - Wikipedia,” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Collaborative_filtering. [Accessed 21 03 2018].

[12] “k-nearest neighbor algorithm - Wikipedia,” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm. [Accessed 15 03
2018].

[13] “x5gon/src/lib/models at master - JozefStefanInstitute/x5gon,” GitHub, Inc., 2018.
[Online]. Available:
https://github.com/JozefStefanInstitute/x5gon/tree/master/src/lib/models.
[Accessed 12 04 2018].

 P a g e 17 / 17

[14] “Is deep learning the new 42?,” VideoLectures.NET, [Online]. Available:
http://videolectures.net/kdd2016_broder_deep_learning/. [Accessed 18 July
2018].

