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ABSTRACT 
The X5GON project is developing a recommender engine to recommend material from 
multiple OER repositories, allowing the users to gain relevant knowledge from multiple 
resources. The system will incorporate cross-site, cross-modal and cross-lingual 
methods and services which will allow us to recommend materials provided in different 
languages, file formats, and from different sites. In this report we present the initial 
steps to achieving this goal – the prototype of a recommendation engine. 

First we describe the data that was acquired through the X5GON platform. We present 
the OER repositories from which we acquired the data, as well as basic statistics of 
the acquired dataset concerning for example the types and languages of the 
documents. 

Next we present the recommendation models we are considering to develop in the 
project. The models are based on content comparison and user preferences.  

Finally, we present the architecture of the recommendation engine prototype and show 
the initial results. We also present a way to embed the recommendation engine results 
on a third party OER portal. 

The cascade model followed by X5GON means that the first version of the 
recommendation engine does not depend on work done in parallel in other work 
packages: this work will be included in the future versions. 
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1 INTRODUCTION 
The main objectives of this project is to create a cross-modal, cross-cultural, cross-
lingual, cross-domain, and cross-site global OER network by connecting several OER 
repositories. To achieve this, we started to develop a recommendation engine which 
inputs OER material and user activity data and outputs a list of materials that are similar 
to the content the user is currently viewing and matches the user’s interests. 

At the time of this writing we had acquired more than 80k items of OER material from 
four different repositories. We used this data to develop a content-based 
recommendation engine prototype which generates suggestions based on the material 
the users are accessing. 

In this report we present the early prototype of recommender engine. The report 
includes a detailed description of the data acquired and to develop the recommender 
engine, a brief overview of recommender systems, and a technical description of our 
engine with examples.  

The document is structured as follows. Section 2 focuses on the data used to generate 
recommendations. The data consists of both OER material information and user 
activity data, however at this stage we only use features from OER material. Next, in 
Section 3 we describe a few approaches to recommender systems and describe the 
engine. We also show how our engine works. Finally, we present the future steps of 
the recommendation engine development in Section 4 and conclude the report in 
Section 5. 
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2 OER MATERIAL AND USER ACTIVITY DATA 
Before we started developing the recommendation engine we needed to understand 
the data that is and will be available to us. This chapter is in some parts taken from 
deliverable D4.1 – Initial prototype of user modelling, however it is relevant for the 
development of the recommender system. 
 
We identified there are two types of data which will be useful in the development 
process: OER material data and user activity data. In this section we give a brief 
description of both types of data and how it will be used in user modelling. The data 
acquisition process of both types is described in D2.1 – Requirements & Architecture 
Report.  

2.1 OER MATERIAL DATA 
The OER material dataset contains information about the material available in OER 
repositories. It is presented in a JSON format containing the following attributes: 

 title: the title of the material 

 provider: the OER provider of the material 

 materialURL: the URL to the material 

 author: who created the material (optional) 

 created: when was the material created or published (optional) 

 type: what is material type, i.e. video, audio, presentation, image, text, etc. 

 language: the language in which it is written, i.e. en, sl, es, etc. 

 metadata: additional metadata acquired from the material, i.e. Wikipedia 

concepts, extracted features, etc. 

 license: the license under which the material is shared. 

The attributes labelled as optional are not necessarily present. 

In the time of this writing we had OER material from 6 repositories at our disposal, out 
of which material from 4 repositories were pre-processed and used for the 
development of the recommendation engine. These repositories are: 

 MIT OpenCourseWare [1] 

 AMS Campus - University of Bologna [2] 

 Madoc - Université de Nantes [3] 

 VideoLectures.NET [4] 

The remaining two OER repositories will be pre-processed in the following months. 
The unprocessed repositories are: 

 PoliMedia – Universitat Politècnica de València [5] 

 virtUOS – Unversität Osnabrück [6] 

These repositories have been processed in WP3 and the result is presented in D3.1 – 
Learning Analytics Engine 1.0. 

The processed repositories together store over 80k items of OER material. Number of 
materials per repository are shown in Figure 1. 
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Figure 1 Number of materials per repository in logarithm scale. Most materials come from MIT 

OpenCouseWare followed by Videolectures.NET. 

Some of the repositories offer material in different languages. All repositories together 
cover 103 languages, however for only 8 languages the count of available material is 
larger than 100. The distribution of items over languages is pictured in Figure 2. We 
only show languages with more than 100 items available. The “Unknown” column 
shows that for about 6k materials we were not able to extract the language. To acquire 
this information, we will improve the language extraction method in our pre-processing 
pipeline. 

 

Figure 2 Number of materials per language in logarithm scale. Most of the material is in English, 

followed by Italian and Slovenian. Materials from which we were not able to extract language will be pre-
processed again with an improved extraction method. 

Repositories contain different types of material – videos, audio, and text. This results 
in different file types of material, meaning that the pre-processing pipeline has to 
handle several different file types. We visualized the distribution of materials over file 
types in Figure 3Error! Reference source not found., however we only show types 

with more than 100 items available. As seen from the figure the dominant file type is 
text (pdf, pptx and docx) followed by video (mp4). The msi file type is an installer 
package file format used by Windows but it can also be a textual document or a 
presentation. If we generalize the file type distribution over all OER repositories we can 
conclude that the dominant file type is text – which we take into account when 
developing the pre-processing pipeline and recommendation engine. 
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Figure 3 Number of items per file type in logarithm scale. The dominant file type is text (pdf, pptx and 

docx), followed by video (mp4). 

Metadata is at this point the most important attribute for building the recommendation 
models. Metadata includes a series of values extracted from the material. One of the 
values is Wikipedia concepts. These represent a semantic space, i.e. vocabulary, in 
which we can compare materials. Additionally, Wikipedia concepts can be viewed as 
topics or interests the material covers.  

Metadata is extracted from the material in the pre-processing pipeline which is 
described in D2.1 – Requirements & Architecture Report. What follows is an in-depth 
description of the Wikipedia concept extraction. 

Due to different types of OER material we needed to include components to extract 
raw text from all of the provided types. We use Translectures [7] to obtain transcriptions 
of audio and video materials, which are then used to extract the raw text, describing 
its content. For textual materials we strip down the acquired document using a node.js 
library named textract [8]. The library inputs the document and returns the raw text of 
its content. 

To extract the Wikipedia concepts we use Wikifier [9]. For each material we split the 
raw text into chunks of at most 10k characters and pass them into Wikifier which 
returns Wikipedia concepts found for the given chunk. These results are aggregated 
and stored in the materials metadata attribute. 

In the future we plan to add level of difficulty to the metadata attribute. Level of difficulty, 
such as primary school, secondary school, or higher education, can be used in 

providing recommendations that match the users level of understanding of a certain 
topic. We also intend to include the findings of WP1 (Learning Rich Content 
Representations) and WP3 (Learning Analytics Engine) in the metadata attribute for 
use in the recommendation engine. 

2.2 USER ACTIVITY DATA 
Apart from the OER material we also acquire user activity data that describes who are 
the users viewing and with which technology he or she does this. We have currently 
acquired about 2.8M user activity records from Videolectures.NET and PoliMedia. This 
data will be used in the next iteration of the recommendation engine. More information 
about the acquired user activity data is found in D4.1 – Initial Prototype of User 
Modelling Architecture.
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3 RECOMMENDER ENGINE 

3.1 RECOMMENDER SYSTEMS OVERVIEW 
Recommendation engine is a subclass of information filtering system that seeks to 
predict the preference a user would give to an item [10]. There are different ways of 
creating recommendations. The recommendation approaches we are considering are 
described in deliverable D4.1 – Initial Prototype of User Modelling Architecture. What 
follows are brief descriptions of the considered recommendation approaches. 

Content based recommendation. This approach is used when user expect to get 
recommendations of OER material that are similar by content to the material he or she 
is currently viewing. This approach does not need user information since it uses 
material attributes such as Wikipedia concepts found under the metadata attribute. 
The initial prototype follows this approach and is described in the Section 3.2. 

Interest based recommendation. Another approach of recommending materials is to 
use user’s interests. As described in deliverable D4.1 we present the users interests 
with a set of Wikipedia concepts that were extracted from the OER materials viewed 
by the user and build a user model. The user model contains topics the user is 
interested and is used in a similar approach as content based recommendation.  

Recommendation based on collaborative filtering. Collaborative filtering is a 
method of making automatic predictions about the interests of a user by collecting 
preferences or taste information from many users [11]. Here, we will expand the 
recommendation engine to provide the user materials which were viewed by other 
users with a similar preference or taste. The material will be sorted based on the 
number of views it got from the set of users with similar taste. 

3.2 RECOMMENDER ENGINE PROTOTYPE 
For the initial prototype of the recommender engine we opted for content based 
recommendation as such recommender systems do not suffer from the cold start 
problem. In this section we present how the recommender engine works and how it 
uses the OER material data. The material data is described in Section 1.2.1.  

The basic idea of X5GON recommender engine is to provide a REST API to partner 
repository owners that generates cross-site, cross-modal, cross-lingual, cross-domain 
and cross-cultural recommendations based on the material the user is accessing on 
the site of that partner repository. This means that it is the OER repositories’ 
responsibility to make API calls requesting the recommendations. The resulting 
recommendations are either a JSON list of recommended materials data or an 
automatically generated HTML with links that is ready to be embedded into OER 
repository site. High-level scheme is pictured in Figure 4. 

The data that we need to compute the recommendations includes: 

 url: the URL of the material the user is accessing, 

 text: any surrounding text (search query, title of the material, abstract or 

description of the material, etc.), and 

 type: [empty, cosine] – metrics used to compare Wikipedia concepts  

o empty - number of common Wikipedia concepts,  
o cosine – use similarity measure between materials raw text and the 

content of found Wikipedia concepts. 
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Figure 4 High-level scheme of recommender engine. The recommended materials can be acquired by 
either providing the material URL (2a) or by raw text (2b).  

There are two separate recommender models in our recommender engine. One uses 
material URL to generate recommendations, whereas the other one relies on raw 
textual input.  

URL- and text-based recommender models both use k-nearest neighbour algorithm 
[12] to compute the recommendations. URL-based recommender system searches for 
k most similar materials to the material with given URL based on the Wikipedia 
concepts. On the contrary text-based recommender engine we search for the materials 
with the most similar raw text to the query text using BOW model. Source code of the 
prototype can be found at [13]. The prototype considers k to be equal 100, i.e. the 
engine recommends 100 most similar materials based on the input. 

URL-based recommendations have higher priority than text-based, meaning that if 
both URL and text are present in the request the engine first tries to provide the URL-
based recommendations. To provide recommendations the engine must first map the 
provided URL to the appropriate OER material. The inability to map URL to the material 
in the database means that the item with the given URL is not in the database yet. This 
mostly happens because the material is new and has not been acquired, pre-
processed and added to the database. We plan to develop a mechanism to add such 
material automatically when we get a request like this from a known provider.  

When the URL is not provided or the engine is unable to map the URL to the material, 
the engine tries to provide text-based recommendations. Additionally, text-based 
recommendations can be used to provide suggestions from the search query from the 
entry site of the repository. 

3.3 RECOMMENDER SYSTEMS RESULTS 
As mentioned in the previous section the material recommendations can be provided 
in two formats. The first is by means of an automatically generated HTML with links to 
the recommended material. This HTML can be embedded into the OER repository 
using the iframe tag. What follows are examples of such generated HTML for both 
URL- and text-based recommendations. 
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Figure 5 shows recommendations in a form of HTML list with links for 
VideoLectures.NET video with title “Is deep learning the new 42?” [14]. For this 

demonstration we executed the following GET request in the browser: 
https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2
016_broder_deep_learning/&type=cosine.  

The results were generated by comparing Wikipedia concepts found in the materials. 
Additionally, the parameter type determines the metrics used when comparing 
materials using Wikipedia concepts. 

 

Similarly, Figure 6 shows recommendations for text “deep learning”. To get these 
recommendations we executed the following GET request from browser: 
https://platform.x5gon.org/embed/recommendations?text=deep%20learning. Here, 
the results are generated using the BOW model. The model compares the raw text 
extracted from the materials with the provided text value in the query. As we have seen 
in section 2.1, OER materials are provided in multiple languages. Because of this we 
use text-based recommendations as a second option – if the URL-based approach 
would not yield results. 

Because we are using Wikipedia concepts as a semantic space representation, we are 
able to compare materials written in different languages. This enables us to provide 
cross-lingual recommendations which is one of the objectives of this work package. 
Additionally, because we acquire materials from different repositories and are of 
different types we can generate cross-site and cross-modal recommendations.  

Figure 5 URL-based recommendations for video 

“Is deep learning the new 42?” 

Figure 6 Text-based recommendations for text 
“deep learning”. 

https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2016_broder_deep_learning/&type=cosine
https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2016_broder_deep_learning/&type=cosine
https://platform.x5gon.org/embed/recommendations?text=deep%20learning
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These features are already shown in the provided recommendations as shown in 
Figure 7. Blue frames mark cross-site and cross-modal suggestions, whereas red 
frame emphasizes cross-lingual case. 

 

Figure 7 Cross-lingual, cross-modal, and cross-site recommendations. 

The recommendation list was generated by executing the following GET request in the 
browser:https://platform.x5gon.org/embed/recommendations?url=http://videolectures.
net/kdd2016_broder_deep_learning/. The selected items appear towards the bottom 
of the list. 

To evaluate the recommendations we would need to get feedback from its users. To 
this end, we had a conversation with the Ministry of Education of Slovenia who will run 
one of the pilots with teachers and educators. TODO 

  

https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2016_broder_deep_learning/
https://platform.x5gon.org/embed/recommendations?url=http://videolectures.net/kdd2016_broder_deep_learning/
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4 FUTURE WORK 
We have implemented content based recommendation method described in Section 
3.2Recommender engine prototype. We set up a service on the cloud infrastructure 
provided by Pošta Slovenije and tested the method. This prototype uses four OER 
repositories as data sources. Other methods require user activity data which is 
provided by the X5GON user activity tracker library. We are currently in the process of 
collecting user activity data and expect to start developing recommendation methods 
from Section 3.1. 

Recommendation engine currently uses content-based recommender models. The 
most important steps for the future include: 

 adding more OER material from different sources, 

 switching from purely content-based recommendations to approaches that 
require user activity data, such as collaborative filtering, 

 including findings from WP1 and WP3, and 

 testing and evaluating the recommendation engine. 
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5 CONCLUSION 
In this report we described the early prototype of the recommendation engine.  

First we made a quick overview of the data we use in the architecture. In section 2 we 
described the OER material data and user activity data that are used in recommender 
engine. The OER material data is the product of the material pre-processing pipeline 
within the X5GON platform described in D2.1 - Architecture and requirements report, 
whereas the user activity data is provided by the X5GON user activity tracker. 

In Section 3 we presented the recommendation engine prototype. Firstly, we did a brief 
overview of common approaches to automatic generation of recommendations. 
Secondly, we described the current state of our recommendation engine prototype. 
We showed a high-level scheme and discussed two different types of recommendation 
models that we covered. We demonstrated how to use the engine and what results are 
expected with several requests. 

Finally, we presented future work in Section 4 which includes adding more data, and 
implementing, testing, and evaluating different approaches. 
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